

Figure 12.1 First flight of PX-1 on September 28, 2007

Fig. 12.2 Single Lap Joint Specimen with Double Row Fastener

Fig. 12.4 Extended Bayesian Network (a) and Its Advantage

Figure 12.5 da/dN-ΔK curve of FSW Specimens

Figure 12.6 Crack Opening Stress with respect to Half Crack Length

as weld	No additional surface treatment
both surface grinding	0.2mm grinding on both surface, Ra=25µm
top surface polished	Welding surface polished (up to 0.05µm)
both surface polished	Both surface polished (up to 0.05µm)

Table 12.1 Surface Treatment Conditions

Figure 12.8 Fatigue Test Specimens

Figure 12.9 Comparison Between Experiments and Prediction with TCD

Specimen	Test	Test temperature ()	Phase angle (°)	Strain range	Strain ratio	Strain rate (/sec)	Hold time (sec.)	Remarks
	LCF	650	-	1.2 ~ 0.4	-1	5x10^ -4	0	F-F
IN-718	LCF			0.6~1.0	-1	5x10^ -4	600	Tension hold
	LCF			0.6 ~ 2.0	-1	2x10^ -5	0	S-S
Mar-M247	LCF	650	-	0.4 ~ 1.0	-1	5x10^ -4	0	F-F
	LCF			0.4 ~ 1.0	0		0	F-F
M247/IN718	LCF	650	-	0.5 ~ 1.2	-1	5x10^ -4	600	Tension hold
	LCF			0.6 ~ 1.0	-1	2x10^ -5	0	S-S
	TME	200/650	180	0.6 ~ 1.0	-1	2x10^ -5	0	OP TMF
	IMF	MIF 500/050	0	0.6~1.0	-1	2x10^ -5	0	IN TMF

Table	12.2	Summarv	of Test	Program	of Mar	-M247/IN-7	718 Dis	similar	Metals
									1.1.0.00000

Figure 12.10 Illustrations Showing Both the Strain Gradient Controlled Test and the Failure Modes Depending on Loading Modes

Fig. 12.11 Comparison of Theoretical Prediction with Experiments for Damage in Ti/GFRP laminates

Fig. 12.12 Comparison of Theoretical Prediction with Experiments for Damage in Ti/CFRP laminates

Figure 12.13 Crack Arrester Concept

Fig. 12.14 Relation between Energy Release Rate G and Distance L for Mode I Type Loading (P = 0.28 N/mm)

Fig. 12.15 Distributions of σ_{yy} for Mode I Type Loading Condition (Arrester Radius: 5 mm, P = 28 N)

Figure 12.16 Relation between Crack Propagation Rate d*a*/d*N* and Distance from Crack Tip to Arrester Edge under Mode I Type Loading

Figure 12.17 Relation Between the Crack Propagation Rate, d*a*/d*N* and Distance from Crack Tip to Arrester Edge, *L* under Mode II Type Loading

Fig. 12.18 Full-Scale Vertical Stabilizer Box Fabricated with A-VaRTM Process

Fig. 12.19 Test Setup of Full-Scale Vertical Stabilizer Box

Fig. 12.20 FEM Analysis Results (Strain Distribution)

Figure 12.21 Next-generation Maritime Patrol Aircraft (XP-1)

Figure 12.22 Next-generation cargo transport (C-X)

Fig. 12.23 Model YS-11A-500

Length Overall	26.3m			
Wingspan	32.0m			
Height	8.9	8m		
Fuselage Diameter	2.8	8m		
Туре	YS-11-100	YS-11A-200/-500		
Max. Take-off weight	23,500kg	24,500kg/25,000kg		
Crew	2			
Passenger	Max. 64 (Standard 60)			
Max. Payload	5,635kg	6,538kg/7,038kg		
Powerplant (Twin)	Rolls-Royce Dart Mk 5	542-10 or -10J or -10K		
Propeller	Dowty Rotol (c)	R209/4-40-4.5/2		
Cruising speed (15,000ft)	258kt	255kt		
Range	1,250nm	1,230nm/1,210nm		
Max. Operating Altitude	20,000ft			
Take-off Distance	970m	1,110m/1,310m		
Landing Distance	1,070m	1,100m/1,110m		

Table 12.3 Specification and Performance of Model YS-11

Table 12.4 Items in AC25.271-1C to be Determined Specific Solution

Design and Evaluation	ldentificationn of components to be evaluated Identification of principal structural elements Selection of critical damage areas
Damages and Defects	Identification of damage location to be evaluated Selection of damage type and size
Tests	Comparability of Loads Spectrum between tests and actual flight Comparability between test articles and actual structure Determination of test cycles Method of artificial damage
Destructive Tests	Tear-down inspection method
Analysis	Validation of damage growth analysis methods and residual strength analysis methods
Inspection Methods	Determination of probability of Detection Determination of minimum detectable damage size Establishment of Inspection Program

Figure 12.24 Schematics of Manufacturing Process Development Procedure

Figure 12.25 Experimental Setup for Full-scale Static Test

Figure 12.26 FEA Prediction of Strain Distribution (Lower Skin)

Figure 12.27 Crack Arrester

Figure 12.28 Schematic of crack detection technique.

Figure 12.29 Schema of Position of FBG Sensor and PZT Actuator and

sensors and PZT actuators

Figure 12.30 Schema of Sub-component Test Article

12/45

Relationship between number of impact and damaged area

Figure 12.32 Examples of detected Lamb Wave (Bonded FBG sensor)

Figure 12.33 Relationship between Correlation Coefficient and Damaged Area

Figure 12.34 Impact Damage Detection System

Strain Measurement

Figure 12.35 Measuring Principle

(a) Upper Panel with Embedded Optical Fiber Sensors and Trimmable Connectors

(b) Appearance of Test System Figure 12.36 Composite Fuselage SHM Demonstrator Test

12/48

* White line indicates embedded small-diameter optical fibers.

Figure 12.37 Stiffened Panel with Fittings

(a) Test System for Impact Loading Test Figure 12.38 System Evaluation Test

(b) Test System for Cyclic Loading Test

Figure 12.39 Impact Identification Test Result

Lamb Waves

Figure 12.41 Visualized Lamb Wave Propagation along with C-scanned Images of Impact-induced Delamination Patterns in Quasi-isotropic Composite Laminates

Figure 12.42 Detected Impact-Induced Delamination in Repaired Quasi-isotropic Composite Laminates

Category	Pilot	Maintenance	Weather or	Still under	Total
		or Material	other reason	investigation	
Year					
2007	12	1	7	3	23
2008	0	0	1	16	17

Table 12.5 Number of Accident Causes by Factor

Table	12.6	Number	of Serious	Incident	Causes	by	Factor
-------	------	--------	------------	----------	--------	----	--------

Category	Pilot	Maintenance	Weather or	Still under	Total
		or Material	other reason	investigation	
Year					
2007	4	1	4	3	12
2008	0	0	0	5	5

Figure 12.43 Coupling in APU

Figure 12.44 Fractured Coupling