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Figure 12.1 First flight of PX-1 on September 28, 2007
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Fig. 12.2 Single Lap Joint Specimen with Double Row Fastener
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Figure 12.3 Difference of open hole and fastener on N;and da/dn
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Figure 12.5 da/dN-AK curve of FSW Specimens
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Figure 12.6 Crack Opening Stress with respect to Half Crack Length
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Table 12.1 Surface Treatment Conditions

as weld

No additional surface treatment

both surface grinding

0.2mm grinding on both surface, Ra=25um

top surface polished

Welding surface polished (up to 0.05um)

both surface polished

Both surface polished (up to 0.05um)

350 + Baze material E—
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A Top surface polished
& Both surface polished
m *. ®
GME(
(MPa) .
Tool mark Crevice (Flaw) Crevict
near burr \
250 /a_. / I—.ﬁ-lﬁ 1= o =2 e
LOP :
Particle Grinding mark
160
1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Fatigue life (cycles)

Figure 12.7 Fatigue Test Results of FSW Specimens with Different Surface Treatments
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Figure 12.8 Fatigue Test Specimens
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Figure 12.9 Comparison Between Experiments and Prediction with TCD

Table 12.2 Summary of Test Program of Mar-M247/IN-718 Dissimilar Metals

Specimen Test Test Phase angle | Strain range | Strain ratio| Strain rate |Hold time Remarks
temperature =) (/sec) (sec.)
LCF 12 04 -1 5x10" -4 0 F-F
IN-718 LCF 650 - 06 1.0 -1 5x10" -4 600 Tension hold
LCF 06 20 -1 2x10" -5 0 S-S
- A -
Mar-M247  |_LCF 650 ] 04 10 1 5x10" -4 0 F-F
LCF 04 1.0 0 0 F-F
LCF 650 ) 05 1.2 -1 5x10" -4 600 Tension hold
- A -
e
TMF | 300/650 S - X
0 0.6 1.0 -1 2x10" -5 IN TMF
Strain control
£ necn 650 Il 650 300- 650

Vi

mech
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Figure 12.10 Illustrations Showing Both the Strain Gradient Controlled Test and the
Failure Modes Depending on Loading Modes
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Fig. 12.12 Comparison of Theoretical Prediction with Experiments for Damage
in Ti/CFRP laminates
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Figure 12.13 Crack Arrester Concept
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Figure 12.16 Relation between Crack Propagation Rate da/dN and Distance from
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Fig. 12.18 Full-Scale Vertical Stabilizer Box Fabricated with A-VaRTM Process

Fig. 12.19 Test Setup of Full-Scale Vertical Stabilizer Box
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Fig. 12.20 FEM Analysis Results (Strain Distribution)

Figure 12.21 Next-generation Maritime Patrol Aircraft (XP-1)
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Figure 12.22 Next-generation cargo transport (C-X)

Fig. 12.23 Model YS-11A-500
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Table 12.3 Specification and Performance of Model YS-11

Length Overall 26.3m
Wingspan 32.0m
Height 8.98m
Fuselage Diameter 2.88m
Type YS-11-100 YS-11A-200/-500
Max. Take-off weight 23,500kg 24,500kg/25,000kg
Crew 2
Passenger Max. 64 (Standard 60)
Max. Payload 5,635kg 6,538kg/7,038kg

Powerplant (Twin)

Rolls-Royce Dart Mk 542-10 or -10J or -10K

Propeller Dowty Rotol (c) R209/4-40-4.5/2
Cruising speed (15,000ft) 258kt 255kt
Range 1,250nm 1,230nm/1,210nm
Max. Operating Altitude 20,000ft
Take-off Distance 970m 1,110m/1,310m
Landing Distance 1,070m 1,100m/1,110m

Table 12.4 Items in AC25.271-1C to be Determined Specific Solution

Design and Evaluation

Identificationn of components to be evaluated
Identification of principal structural elements
Selection of critical damage areas

Damages and Defects

Identification of damage location to be evaluated
Selection of damage type and size

Tests

Comparability of Loads Spectrum between tests and actual
flight

Comparability between test articles and actual structure
Determination of test cycles

Method of artificial damage

Destructive Tests

Tear-down inspection method

Analysis

Validation of damage growth analysis methods and residual
strength analysis methods

Inspection Methods

Determination of probability of Detection
Determination of minimum detectable damage size
Establishment of Inspection Program
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Determination of Structural
Type/ Development of
Manufacturing Process

Manufacturing Process Improvement
by Fabricating Sub-Component

Applicability Demonstration by Full-
scale Structure

Figure 12.24 Schematics of Manufacturing Process Development Procedure

Figure 12.25 Experimental Setup for Full-scale Static Test
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Figure 12.26 FEA Prediction of Strain Distribution (Lower Skin)
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Figure 12.28 Schematic of crack detection technique.
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Figure 12.30 Schema of Sub-component Test Article
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Figure 12.32 Examples of detected Lamb Wave (Bonded FBG sensor)
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Figure 12.33 Relationship between Correlation Coefficient and Damaged Area
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Figure 12.34 Impact Damage Detection System
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Figure 12.35 Measuring Principle

(b) Appearance of Test System

Figure 12.36 Composite Fuselage SHM Demonstrator Test
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(b) Inside View of Specimen

(a) Outside View of Specimen

* White line indicates embedded small-diameter optical fibers.
Figure 12.37 Stiffened Panel with Fittings

(a) Test System for Impact Loading Test

Figure 12.38 System Evaluation Test
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(b) Test System for Cyclic Loading Test
Figure 12.38 System Evaluation Test (Continued)
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Figure 12.39 Impact Identification Test Result
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Figure 12.40 Full-Field Damage Detection System Using Pulse-Laser Generated
Lamb Waves
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Figure 12.41 Visualized Lamb Wave Propagation along with C-scanned Images of

Impact-induced Delamination Patterns in Quasi-isotropic Composite Laminates
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Figure 12.42 Detected Impact-Induced Delamination in Repaired Quasi-isotropic

Composite Laminates

Table 12.5 Number of Accident Causes by Factor

Category Pilot Maintenance Weather or Still under Total
or Material other reason investigation
Year
2007 12 1 7 3 23
2008 0 0 1 16 17

Table 12.6 Number of Serious Incident Causes by Factor

Category Pilot Maintenance Weather or Still under Total
or Material other reason investigation
Year
2007 4 1 4 3 12
2008 0 0 0 5 5




12/53

T CAP

Coupli-'rs

Figure 12.44 Fractured Coupling



