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Abstract: This paper discusses the importance of Probabilistic Damage Tolerance 

Analysis (PDTA) tools in ensuring commercial and military fleets’ continued 

operational safety (COS). The traditional approach to calculating single-flight-

probability-of-failure (SFPOF) has limitations and assumptions that can affect the 

confidence in the estimate. Under Federal Aviation Administration (FAA) sponsorship, 

our team has been developing a risk assessment computer code, SMART|DT, that can 

account for important random variables such as material properties, loading usage, 

inspection probability of detection, and build and repair quality. The focus of this paper 

is the Adaptive Multiple Importance Sampling (AMIS) method, which provides 5 to 6 

orders of magnitude improvement in computational efficiency for comprehensive PDTA 

compared to standard Monte Carlo sampling. AMIS enables the use of realistic fracture 

mechanics models and a large number of random variables to be considered. The AMIS 

method can be applied not only to the COS of aircraft fleets but also to digital twin 

modeling, virtual testing, and other new applications. Two real-case scenario examples 

demonstrate the accuracy and efficiency of the AMIS method using a comprehensive set 

of random variables for management of aircraft fleets. 

 

Keywords: Probabilistic Damage Tolerance, Adaptive Multiple Importance Sampling. 

 

 

INTRODUCTION 

 

The continued operational safety (COS) of commercial and military fleets relies on Probabilistic 

Damage Tolerance Analysis (PDTA) tools to effectively assess and manage the risk of structural failure.  

PDTA enables risk assessment and management by calculating the single-flight-probability-of-failure 

(SFPOF) as a function of flight hours. The SFPOF of an aircraft component is challenging to compute 

due to its small probability, typically 10-7 or less.  Traditionally, it is calculated with limitations on the 

number of random variables and assumptions on fracture mechanics that may affect the confidence in 

the SFPOF estimate. Furthermore, these limitations and assumptions inhibit the use of the latest 

developments in fracture mechanics modeling, structural health monitoring, material modeling, and 

manufacturing due to the absence of efficient probabilistic methods to successfully calculate the risk.   
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Under Federal Aviation Administration (FAA) sponsorship, our team has been developing a risk 

assessment computer code, SMART|DT, for aircraft structures that can account for the variability of 

important parameters such as material properties, usage, inspection probability of detection, and build 

quality.  This presentation will focus on an Adaptive Multiple Importance Sampling (AMIS) method 

that provides 5 to 6 orders of magnitude improvement in computational efficiency for performing 

comprehensive PDTA compared to standard Monte Carlos sampling. The most fundamental aspect of 

AMIS is that it will detect the important values for each variable that contribute the most to the SFPOF. 

In addition, since the probability-of-failure is needed at multiple flight hours to assess risk, a mixture 

density consisting of a weighted combination of many component densities is developed which can 

accurately estimate SFPOF across all analysis times requested by the user. The AMIS method allows 

one to consider more realistic fracture mechanics models and a larger number of random variables than 

has been previously possible.  AMIS can be used not only for the COS of aircraft fleets, but also for 

applications such as digital twin modeling, virtual testing, and other new applications. 

 

METHODOLOGY 

 

SMART|DT 

The SMART|DT software [1, 2] employs a comprehensive methodology consisting of five main 

components for performing a PDTA. These components include aircraft load generation, extreme value 

distribution (EVD) generation, fracture mechanics crack growth module with links to NASGRO and 

internal crack growth capabilities [3], inspection and repair module, and probabilistic methods for 

generating random variables and computing the SFPOF at any point in the aircraft's lifespan. 

Furthermore, the software allows for fleet management and a Bayesian updating module will be 

implemented to use field inspection data to update the crack size distributions. Figure 1 shows the 

modules within SMART|DT, which can generate the necessary inputs for multiple fracture mechanics 

evaluations, enabling fracture mechanics parameters to be random variables within the PDTA. 

 

 
Figure 1: SMART|DT Methodology 
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In PDTA, the probability of failure (POF) is the probability that the maximum value of the applied stress 

(during the next flight) will exceed the residual strength σRS of the aircraft component and it can be 

written mathematically as follows: 

 

𝑃𝑂𝐹(𝑡) = 𝑃[𝜎𝑀𝐴𝑋 > 𝜎𝑅𝑆(𝑡)]                                                   (1) 

 

The single flight probability of failure (SFPOF) is defined as the probability of failure on the next flight 

assuming survival until that flight. If one assumes that the probability of survival is one over many 

flights for small probabilities of failure, e.g. certain survival, the conditional probability of failure is 

given by Eqn. 2, which is referred to as Lincoln POF in the literature. The SFPOF for a given time, 𝑡, is 

calculated as 𝑆𝐹𝑃𝑂𝐹(𝑡) = 𝐸[𝑆𝐹𝑃𝑂𝐹𝑐𝑜𝑛𝑑(𝒙, 𝑡)], the expected value of 𝑆𝐹𝑃𝑂𝐹𝑐𝑜𝑛𝑑 over all possible 

values of random variables 𝒙 as shown in Eqn. 3. 

 

𝑆𝐹𝑃𝑂𝐹𝑐𝑜𝑛𝑑(𝒙, 𝑡) = 1 − 𝐹𝐸𝑉𝐷(𝜎𝑅𝑆(𝒙, 𝑡)) (2) 

𝑆𝐹𝑃𝑂𝐹(𝑡) = ∫ 𝑆𝐹𝑃𝑂𝐹𝑐𝑜𝑛𝑑(𝒙, 𝑡) 𝑓(𝒙) 𝑑𝒙 (3) 

 

If survival is not assumed to be certain for small probabilities of failure, the Freudenthal SFPOF is 

calculated as a hazard function, Eqn. 6, of the cumulative probability of failure up to time 𝑡 over 𝑛 

flights. The conditional cumulative probability of failure, including a survival term which is the product 

of the probability of surviving all prior flights, is given in Eqn. 4, and the derivative of 𝐶𝑇𝑃𝑂𝐹𝑐𝑜𝑛𝑑, 

derived by taking the finite difference of 𝐶𝑇𝑃𝑂𝐹𝑐𝑜𝑛𝑑(𝒙, 𝑡𝑛) and 𝐶𝑇𝑃𝑂𝐹𝑐𝑜𝑛𝑑(𝒙, 𝑡𝑛 − 1) with respect to 

𝑛, is shown in Eqn. 5. The resulting hazard function is then calculated from the expected values of 

𝐶𝑇𝑃𝑂𝐹𝑐𝑜𝑛𝑑 and its derivative, 𝐻𝑧(𝐶𝑇𝑃𝑂𝐹𝑐𝑜𝑛𝑑) =
𝐸[𝑑 𝐶𝑇𝑃𝑂𝐹𝑐𝑜𝑛𝑑(𝒙, 𝑡) d𝑡⁄ ] (1 − 𝐸[𝐶𝑇𝑃𝑂𝐹𝑐𝑜𝑛𝑑(𝒙, 𝑡)])⁄ . 

 

𝐶𝑇𝑃𝑂𝐹𝑐𝑜𝑛𝑑(𝒙, 𝑡) = 1 − ∏ 𝐹𝐸𝑉𝐷(𝜎𝑅𝑆(𝒙, 𝑡𝑖))
𝑛

𝑖=1
 (4) 

 

𝑑 𝐶𝑇𝑃𝑂𝐹𝑐𝑜𝑛𝑑(𝒙, 𝑡) d𝑡⁄ = [∏ 𝐹𝐸𝑉𝐷(𝜎𝑅𝑆(𝒙, 𝑡𝑖))
𝑛−1

𝑖=1
] (1 − 𝐹𝐸𝑉𝐷(𝜎𝑅𝑆(𝒙, 𝑡𝑛))) (5) 

 

𝑆𝐹𝑃𝑂𝐹(𝑡) =
∫ d 𝐶𝑇𝑃𝑂𝐹𝑐𝑜𝑛𝑑(𝒙, 𝑡) d𝑡⁄  𝑓(𝒙) 𝑑𝒙

1 − ∫ 𝐶𝑇𝑃𝑂𝐹𝑐𝑜𝑛𝑑(𝒙, 𝑡)  𝑓(𝒙) 𝑑𝒙
 (6) 

 

Failure can occur by unstable fracture, 𝐾𝐼 ≥ 𝐾𝐶, where 𝐾𝐼 denotes the stress intensity factor and 𝐾𝐶 is 

the fracture toughness, or net section yield (NSY), or the crack reaching the width of the part.   

 

The SFPOF above is challenging to compute due to its small probability, typically 10-7 or less.  When 

variation of the crack growth parameters and additional random variables are included in PDTA, the 

computational cost becomes prohibitive for standard Monte Carlo (SMC) and quadrature integration 

methods. For this reason, this paper will discuss the implementation of the AMIS algorithm that provides 

5 to 6 orders of magnitude improvement in computational efficiency for performing comprehensive 

PDTA. 

 

Adaptive Multiple Importance Sampling (AMIS) 

SMC generates realizations from the nominal joint distribution probability density function, 𝑓(𝒙), and 

calculates a sampling approximation, Eqn. 7, of the integral functions in Eqns. 3 and 6 as a sum of the 

conditional values divided by the number of realizations where any of the conditional equations defined 

in the previous section, for example in Eqn. 2 for Lincoln, can be substituted for 𝐻(𝒙, 𝑡) and 𝑁𝑠𝑎𝑚𝑝 is 

the number of realizations. 

 

𝐸[𝐻(𝑥, 𝑡)] =
1

𝑁𝑠𝑎𝑚𝑝
∑ 𝐻(𝒙𝑖, 𝑡)

𝑁𝑠𝑎𝑚𝑝

𝑖=1

(7) 



J. Ocampo, N. Crosby, H. Millwater, M. Reyer, S. Mottaghi, M. Nuss, B. Gamble, and C. Hurst 

The 31st symposium of ICAF – the International Committee on Aeronautical Fatigue and Structural Integrity 

4 

 

Figure 2 depicts the difficulty of estimating small probabilities with SMC. On average, only one in ten 

realizations will be outside the inner-most ellipse, and the proportion falls an order of magnitude with 

each ellipse, down to one in ten million for the outer-most ellipse. The failure region, shaded grey, 

represents where the conditional probability of failure is greater than 0.999. The important region, 

shaded red, shows the extent of the region bounding 99% of the integrated SFPOF (shaded gray). With 

SMC, a very large sample size of approximately 109 is required to generate enough realizations in the 

important region for a good estimate.  

 

 
Figure 2: Standard Monte Carlo Sampling 

 

 

Importance sampling (IS) provides a much more efficient method to compute the SFPOF than SMC. IS 

allows the realizations to be generated from a sampling density 𝑔(𝒙) and corrects for the sampling bias 

by weighting each sample by the likelihood ratio, 𝑓(𝒙) 𝑔(𝒙)⁄ , which is also referred to as the importance 

weight, 𝑤(𝒙) as shown in Eqn. 8. 

 

𝐸[𝐻(𝑥, 𝑡)] =
1

𝑁𝑠𝑎𝑚𝑝
∑ 𝐻(𝒙𝑖 , 𝑡)

𝑓(𝒙𝑖)

𝑔(𝒙𝑖)

𝑁𝑠𝑎𝑚𝑝

𝑖=1

=
1

𝑁𝑠𝑎𝑚𝑝
∑ 𝐻(𝒙𝑖, 𝑡) 𝑤(𝒙𝑖)

𝑁𝑠𝑎𝑚𝑝

𝑖=1

(8) 

 

Importance sampling can generate nearly all of the samples in the important region if the important 

region location and shape are known. The difficulty with importance sampling is that samples outside 

of the important region can become infinitely weighted if the tails of 𝑔(𝒙) decay faster than the tails of 

the product of the conditional probability and nominal density, 𝐻(𝒙, 𝑡) 𝑓(𝒙). Hence, the sampling 

density must be selected carefully because a poor selection can increase the variance of the importance 

sampling estimate. 

 

Adaptive importance sampling methods learn the location and shape of the important region by 

repeatedly taking a small sample and adjusting the sampling density. Many adaptive importance 

sampling methods are based on adapting a single multivariate importance sampling density. This limits 

reuse of samples evaluated in the adaptation process because including samples from any density other 

than the current 𝑔(𝒙) will bias the final result. 

 

Mixture densities allow multiple sampling densities to be combined and used as the importance 

sampling density as shown in Eqn. 9 where 𝒙𝑖𝑗 are 𝑁𝑠𝑎𝑚𝑝 realizations generated from each of 𝑁𝑚𝑖𝑥 

component densities, 𝑔(⋅, 𝜃𝑗), and 𝜔𝑗 is are weighting functions that define a partition of unity, requiring 
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∑ 𝜔𝑚(𝒙𝑖𝑗) = 1
𝑁𝑚𝑖𝑥
𝑚=1  for all 𝒙𝑖𝑗. The notation for component densities in Eqn. 9 changes signifying that 

a parametric distribution is used for the component densities with distribution parameters 𝜽𝑗 for the 𝑗-

th component density.    

 

𝐸[𝐻(𝑥, 𝑡)] = ∑
1

𝑁𝑠𝑎𝑚𝑝
∑ 𝐻(𝒙𝑖𝑗 , 𝑡) 𝜔𝑗(𝒙𝑖𝑗) 

𝑓(𝒙𝑖𝑗)

𝑔(𝒙𝑖𝑗, 𝜃𝑗)

𝑁𝑠𝑎𝑚𝑝

𝑖=1

𝑁𝑚𝑖𝑥

𝑗=1

(9) 

 

With standard mixture weighting, Eqn. 10, the likelihood ratio of samples drawn from the tail of the 

sampling density can still be magnified by several orders of magnitude, and because standard mixture 

weights only depend on 𝑔(⋅, 𝜃𝑗) from the component density that generates samples 𝒙𝑖𝑗, badly weighted 

samples continue to affect the final expectation value and variance until a large number of samples are 

accumulated to correct the balance. Importance sampling with mixture densities was not widely adopted 

until other methods of mixture weighting were developed. 

 

𝜔𝑚
𝑠𝑡𝑑(𝒙𝑖𝑗) = {

1,    𝑚 = 𝑗
0,    otherwise

(10) 

 

Veach and Guibas conceived that as long as the weighting functions define a partition of unity, the 

resulting mixture importance sampling estimator would remain unbiased, and proposed several 

weighting functions[4]. In addition to standard mixture weighting, Veach and Guibas defined what has 

since been referred to as balance heuristic mixture weighting shown in Eqn. 11. When an equal number 

of samples are generated from each component density, 𝑛𝑘 = 𝑛𝑚 = 𝑁𝑠𝑎𝑚𝑝, Eqn. 12 results from 

substituting Eqn. 11 into Eqn. 9 and simplifying. From Eqn. 12, it can be intuitively understood that 

very small values resulting from samples generated in the tail of any of the sampling densities will no 

longer have a oversized impact on the final estimate and estimate variance because when summed over 

all of the component densities, values that are orders of magnitude larger dominate. 

𝜔𝑚
𝑏ℎ(𝒙𝑖𝑗) =

𝑛𝑚 𝑞(𝒙𝑖𝑗 , 𝜽𝑚)

∑ 𝑛𝑘  𝑞(𝒙𝑖𝑗, 𝜽𝑘)
𝑁𝑚𝑖𝑥
𝑘=1

(11) 

 

𝐸[𝐻(𝑥, 𝑡)] =
1

𝑁𝑚𝑖𝑥  𝑁𝑠𝑎𝑚𝑝
∑ ∑ 𝐻(𝒙𝑖𝑗 , 𝑡) 

𝑓(𝒙𝑖𝑗)

(1 𝑁𝑚𝑖𝑥⁄ ) ∑  𝑞(𝒙𝑖𝑗 , 𝜽𝑘)
𝑁𝑚𝑖𝑥
𝑘=1

𝑁𝑠𝑎𝑚𝑝

𝑖=1

𝑁𝑚𝑖𝑥

𝑗=1

(12) 

 

Owen and Zhou further showed that an upper bound is placed on the importance weights for all samples 

when balance heuristic weights are used with a mixture that includes the nominal density [5]. Cornuet 

et al. developed an adaptive multiple importance sampling method using balance heuristic importance 

weights and applied the method to several academic example problems [6]. Thijssen and Kappen 

showed that using standard weights during the adaptation process to determine new component density 

parameters addressed consistency and convergence issues with the original AMIS algorithm [7]. 

 

Using balance heuristic weighting with a mixture importance sampling density which includes the 

nominal density as one of the component densities enables the resulting importance sampling algorithm 

to collectively use all of the samples generated in each adaptation trial instead of throwing away all but 

the final set. In addition, because balance heuristic weighting promotes the most favorable likelihood 

ratio from all of the component densities due to the summation term in the denominator, realizations 

from every component density contribute with low variance to the final estimate once the near optimal 

sampling density is found. 

 

The AMIS algorithm presented in this paper adapts a mixture importance sampling density consisting 

of many component multivariate normal densities to estimate SFPOF values over a range of evaluation 

times [8]. Sampling is conducted in standard normal space which allows a common scaling to be used 

across all random variables. The random numbers for each variable are transformed back from standard 

normal to physical space before evaluating the crack growth function.  
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The initial sampling density is centered at the origin in standard normal space with an identity covariance 

matrix multiplied by a scaling factor of 9 corresponding to a standard deviation of 3 for each random 

variable. This initial sampling satisfies the conditions to assure an upper bound for all balance heuristic 

importance weights. The algorithm then explores the parameter space by adding new multivariate 

normal component densities with the same scaled covariance matrix for a subset of the SFPOF 

evaluation times such that for each evaluation time, the calculated optimal sampling density location is 

within a preset distance of one of the initialization component densities using a relative entropy metric. 

After adding initialization component densities that cover the important regions for all SFPOF 

evaluation times, additional component densities are adaptively added to the mixture for the evaluation 

time with the highest coefficient of variation (COV) until the SFPOF estimate COVs for all evaluation 

times are all below the target COV threshold. Once the adaptation process finishes, the final SFPOF 

values are calculated using Eqn. 12 where the conditional probability of failure functions from the 

previous section are substituted for 𝐻(𝒙, 𝑡) as needed. 

 

Figure 3 presents an instance of traditional importance sampling for two random variables, the initial 

crack size (𝑎𝑖) and fracture toughness (𝑘𝑐), where the probability density changes over time, as shown 

on the left-hand side. The right-hand side illustrates the density mixture for the same two random 

variables that were generated utilizing the AMIS algorithm. 

 
 

Figure 3: Traditional Importance Sampling (left) and Adaptive Multiple Importance Sampling (right) 

 

Two example problems are presented to demonstrate the advantages of the AMIS method to improve 

the computational efficiency for performing comprehensive PDTA. The method is available within the 

SMART|DT software that can be accessed by contacting the authors. 

 

EXAMPLE PROBLEMS 

 

Example 1 – Handbook Example Problem 

The handbook example problem involves a through crack that propagates from a fastener hole positioned 

at the center of a plate under remote tensile loading. Figure 4 provides a schematic of the problem. 
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Figure 4: Through Thickness Crack in a Fastener Hole. 

 

The handbook problem uses a closed-form solution for the crack size versus time, as shown in Eqn. 13, 

which allows for a much faster calculation but gives up the capability to model crack growth as a 

function of remote stress and crack growth rate parameters. The residual stress shown in Eqn. 15 can be 

calculated directly from the crack size, fracture toughness, and the geometry factor given in Eqn. 14, 

which is a product of geometry factors for a crack growing from a hole and crack approaching an edge. 

 

𝑎(𝑡) =  𝑎0exp (𝑡 ⋅ 2.93 × 10−4)                                             (13) 

 

In Eqn. 14 the first half of the right-hand side is the beta factor for the hole and the second half is the 

beta width factor. 

 

𝛽(𝑎(𝑡)) =  (0.6762 +
0.8734

0.3246+𝑎(𝑡)/𝑟
) × (√𝑠𝑒𝑐 (

𝜋(𝑟+𝑎(𝑡))

𝑤
))                          (14) 

 

𝜎𝑟𝑠(𝑎(𝑡)) =  
𝐾𝑐

𝛽(𝑎(𝑡))√𝜋𝑎(𝑡)
                                                  (15) 

 

 

Table 1 defines the variables for the handbook problem. The probability distribution and distribution 

parameters are specified also in Table 1. Deterministic values are given for the width and hole radius. 

The Weibull minimum distribution is used for the maximum stress per flight, 𝜎𝐸𝑉𝐷, in this example. The 

CDF of the three-parameter Weibull minimum distribution is 𝐹(𝑥)  =  1 − 𝑒𝑥𝑝(−((𝑥 − 𝜇)/𝛽)𝛼) with 

location 𝜇, scale 𝛽, and shape 𝛼. 
 

Table 1: Handbook problem variable definitions. 

Random Variable Distribution Parameters 

Initial crack size, 𝒂𝟎 Lognormal 
mean = 0.003 in 

standard deviation = 0.0047 in  

Fracture toughness, 𝐾𝐶 Normal 
mean = 34.8 ksi in1/2 

standard deviation = 3.9 ksi in1/2 

Maximum stress, 𝜎𝐸𝑉𝐷 Weibull 

Location = 5.0 ksi 

Scale = 10.0 ksi 

Shape = 5.0 

Width,  𝑤  10.0 in 

Hole radius, 𝑟  0.125 in 

 

Liao’s results [9] using the NRC PDTA software ProDTA have been digitized and are reproduced here 

along with results from the SMART|DT AMIS algorithm. Figure 5 displays the AMIS PDTA and 
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ProDTA SFPOF results in the top plot, while the AMIS PDTA estimator COV is shown in the bottom 

panel. 

 

For the Lincoln SFPOF, the AMIS PDTA algorithm estimated SFPOF values ranging from 10−10 to 

10−4, with 10% COV for 15 evaluation times ranging from t = 0 throughout t = 10,000, using a total of 

880 realizations. For the Fruedenthal SFPOF the AMIS algorithm estimated SFPOF values ranging from 

10−11  to10−7, with 10% COV at 15 evaluation times, using a total of 3040 realizations. 

 

 

 
Figure 5: Top: AMIS PDTA SFPOF Lincoln formulation (orange) and Freudenthal formulation 

(cyan), ProDTA SFPOF Lincoln formulation (brown dashed) and Freudenthal formulation (blue dash-

dot). Bottom: AMIS PDTA COV for Lincoln formulation (orange) and Freudenthal formulation 

(cyan) SFPOF estimators 

 

Example 2 – Capstone Example Problem 

This example problem introduces additional random variables and the crack growth analyses are 

evaluated using NASGRO [10]. The geometry for this example is a corner crack growing from a fastener 

hole under remote tension. Crack growth is evaluated by NASGRO using an equivalent constant 

amplitude stress spectrum [11]. Table 2 gives the random variable definitions for the problem which 

includes 5 random variables. The inspection schedule starts at 8,000 flights and the inspection and repair 

process keeps the risk below 10-7.  
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Table 2: Capstone problem random variable definitions. 

Random Variable Distribution Parameters 

Initial crack size, 𝒂𝟎 Weibull 
scale = 4.17 x 10-5 in 

shape = 0.45 in  

Fracture toughness, 𝐾𝐶 Normal 
mean = 35.0 ksi in1/2 

standard deviation = 3.5 ksi in1/2 

Log10 Paris C Normal 
mean = -9.0 

standard deviation = 0.08 

Maximum stress, 𝜎𝐸𝑉𝐷 Weibull 

Location = 5.0 ksi 

Scale = 1.3 ksi 

Shape = 0.007 

Probability of Detection POD Lognormal 
mean = 0.0215 in 

standard deviation = 0.05 in 

Repair crack size Lognormal 
mean = 0.065 in 

standard deviation = 0.004 in  

Paris Exponent m  3.8 

Width,  𝑤  5.0 in 

Hole radius, 𝑟  0.125 in 

 

Figure 6 presents a comparison of the SFPOF results obtained using the AMIS algorithm and those 

obtained from 109 SMC samples. The figure shows that the AMIS results are consistent with the SMC 

sampling results, indicating that the AMIS algorithm can produce accurate results when estimating 

probabilities across a large range of SFPOF values. 

 

 
Figure 6: Top: PDTA AMIS uninspected SFPOF result (orange) and inspected SFPOF  (cyan) Monte 

Carlo results plotted as dashed lines  using 109 samples. Bottom: TheAMIS coefficient of variance 

estimators 

 

CONCLUSIONS 

 

The incorporation of the AMIS algorithm into the SMART|DT software has led to a significant 
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improvement in efficiency, as demonstrated in this paper. Specifically, compared to standard Monte 

Calo sampling, the AMIS algorithm is 6 orders of magnitude more efficient in estimating probabilities 

of failure on the order of 10−7. This efficiency allows for the incorporation of additional random 

variables into the problem and the use of more realistic fracture mechanics solutions. Furthermore, the 

SMART methodology in combination with AMIS is not limited to aircraft fleet COS and can also be 

applied to digital twin modeling, virtual testing, and other novel applications. The accuracy and 

efficiency of the AMIS method are demonstrated through two real-case scenario examples, which utilize 

a comprehensive set of random variables. 
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