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Abstract: In order to solve the inverse problem of structural load distribution recovery 

from strain measurements, this paper focuses on how to optimize the number and 

locations of strain measurements, which is the key problem of influence coefficient 

method. An optimization procedure of selecting strain measurement locations centered 

on basis strains selection is proposed, which is matched with the Euclidean space 

method proposed in the previous study. Taking the load rams and fiber optic sensor 

data in a full-scale wing fatigue test as a case study, the feasibility of the optimization 

procedure is verified under the limited number of strain measurements. Furthermore, 

the load prediction accuracy under different numbers of strain measurements 

(unrestricted, 60 and 30) and different strain measurement errors (zero error, 2% 

random error, 5% random error, and actual error) are compared and analysed. It is 

verified that the optimization process proposed in this paper can provide quite high 

accuracy and robustness of load predictions and the load prediction accuracy is higher 

than traditional load calibration program based on strain bridges. It is recommended 

that the number of strain measurements be at least twice the number of basis load cases 

in practical applications. 

 

Keywords: distributed load recovery; influence coefficient method; Euclidean space 

method; basis strains selection; basis cases selection  

 

 

INTRODUCTION 
 

For the inverse problem of structural load distribution recovery from strain measurements, the most 

widely used method is the influence coefficient method [1]-[3]. In the influence coefficient method, 

the accuracy of load distribution recovery depends on three main aspects, which are the selection of 

basis load cases, the selection of the number and location of strain measurements, and the reduction of 

ill-conditioning of the inverse matrix. 

 

The authors have carried out an in-depth discussion and research on the selection of basis load cases 

and weakening of ill-conditioning of the inverse matrix in the previous study [4]-[5]. Distinguishing 

from the point loads method and load basis function method [1], the authors proposed a stepwise 

method based on Schmidt's orthogonalization of the maximum vertical distance to select the basis 

vectors from Euclidean space, which is called Euclidean space method[4]-[5] and used to select 

linearly independent basis cases from design load case database. Moreover, a set of engineering 

feasible distributed load recovery approach was established based on Euclidean space method. Taking 



Hongna Dui , Dongliang Liu, and Lixin Zhang 

The 31st symposium of ICAF – the International Committee on Aeronautical Fatigue and Structural Integrity 

2 

load rams and fiber optic sensor data of a aircraft wing fatigue test as a case study, it is verified that 

the load recovery approach has high prediction accuracy and robustness. 

 

How to optimize the strain measurement locations with a limited number of strain measurements to 

maximize the accuracy and robustness of load distribution recovery is an engineering challenge and 

the focus of this paper. The literature [6] proposed the maximum determinant method (called D-

optimal method), and the literature [7]-[8] suggested the use of sequential exchange algorithms to 

maximize the determinant by sequential augmentation and reduction of matrix. The literature [9] 

proposed the optimal condition number method (called C-optimal method) and verified that C-optimal 

method performs better than D-optimal method. 

 

D-optimal method and C-optimal method are not suitable for direct application in distributed load 

recovery approach based on Euclidean space method [4], because the process needs to further select 

strain basis cases from the original strain space, and the criterion of selecting  strain basis cases is not 

maximizing the determinant but can represent the strain space. Thus, even through the original strain 

space is conctructed with D-optimal method，the strain space is reconctructed with Euclidean space 

method, which does not guarantee that the determinant of the reconstructed matrix is the maximum. 

Therefore, an optimization method for selecting strain measurement locations that matches the 

distributed load recovery approach based on Euclidean space method is proposed in this paper. 

 

INFLUENCE COEFFICIENT METHOD 
 

Here, the influence coefficient method is briefly introduced. Based on linear elastic assumption, the 

influence coefficient method establishes mathematical relations between structural responses (such as 

displacement, stress, strain, etc.) and structural external loads, expressed as a linear matrix equation, 

 

1 1{ } [ ]{ }g g m m  =  
                                                          (1) 

 

1 1{ } [ ]{ }n n m m  =f P 
                                                          (2) 

 

where, {·} is a column vector, [·] is a matrix, {ε} and {f} is the strain vector and the load vector at an 

unknown load case, [P] is load distribution matrix at basis load cases, [A] is strain distribution matrix 

at basis load cases (referred to as the influence coefficient matrix), {β} is the linear coefficient, g is the 

number of strain measurements, m is the number of basis load cases, and n is the number of loading 

points. 

 

According to the influence coefficient method, when [P] and [A] are determined and {ε} under any 

load condition is known, the load distribution {f} can be predicted by first calculating {β} by Equ. (1) 

and then substituting {β} into Equ. (2). 

 

In practical application, {ε} obtained by physical test inevitably has measurement error. Assuming that 

strain measurement error obeys an independent normal distribution with a variance of σ2, the variance-

covariance matrix of {β} can be obtained by transforming Equ. (1), 

 
2 1var({ }) ([ ] [ ])T −= A A                                                           (3) 

 

where, ([A]T[A])-1 is referred to as the sensitivity of [A].  

 

For a given strain measurement variance σ2, the best combination of location, angle and number of 

strain measurements should be selected to minimize the sensitivity of [A] or maximize the determinant 

of ([A]T[A]) so as to improve the robustness of load recovery.  
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This paper focuses on how to optimize the strain measurement locations with a limited number of 

strain measurements based on the literature [4]. In practice, the number of strain measurements that a 

target structure can allow to be instrumented is usually limited, especially for the use of strain gauges. 

In addition, the optimal angle of strain measurements is not studied in this paper, and the direction of 

the maximum principal stress at load cases of interest is usually taken in engineering. 

 

OPTIMIZATION OF SELECTING STRAIN MEASUREMENT LOCATIONS 
 

An optimization procedure of selecting strain measurement locations centered on basis strains 

selection is proposed, shown as Figure 1, which is matched with the Euclidean space method proposed 

in the literature [4].  

 

The optimization process is as follows: 

 

Step 1): Construct load column space according to load distribution at design load cases, and stepwise 

select load basis cases based on Euclidean space method; 

 

Step 2): Construct strain row space according to candidate strain set at design load cases, and stepwise 

select basis strains based on Euclidean space method; 

 

Step 3): Construct strain column space according to basis strains set at design load cases, and stepwise 

select strain basis cases based on Euclidean space method, then influence coefficient matrix [A] is 

determined; 

 

Step 4): Calculate det([A]T[A]), where det means determinant; 

 

Step 5): Change the initial basis strain in step 2), and repeat step 2) ~ step 4), then select [A] with the 

maximum det([A]T[A]), and the final load distribution matrix [P] is determined at the same time.  

 

Step 1） Step 2）

Step 3）

Design load cases

Construct load column 

space

Candidate strain sets

Construct strain row 

space

Determine [A]

max(det([A]T[A]))?

Yes

No

Select load basis cases Set the number of strains

Select initial strain 

Select basis strains

Construct strain column 

space

Select strain basis cases

Determine the optimal [A]

 
Figure 1: Flowchart of strain measurement locations optimization  



Hongna Dui , Dongliang Liu, and Lixin Zhang 

The 31st symposium of ICAF – the International Committee on Aeronautical Fatigue and Structural Integrity 

4 

 

Selection of load basis cases. The original load distribution matrix [Pn,M]=({f1},{f2},...,{fM}) is 

constructed according to load distribution at design load cases, where {fi} is the column vector of load 

distribution at the ith load case, M is the number of design load cases, and n is the number of loading 

points.  

 

Based on Euclidean space method [4]-[5], mf load basis cases can be stepwise selected from the design 

load cases. Any load case can be linearly represented by this set of basis cases. The process is shown 

in Figure 2, and the general idea is to select the vector with the largest vertical distance from the 

current Euclidean space in turn to construct a new Euclidean space until all vectors are in that 

Euclidean space and the selected vectors are the basis cases. 

 

Select an initial load case, mf=1

Build mf-dimensional load column space mf=mf+1

 max(|{fi
e}⊥|)>α?

Choose the load case     
corresponding to  max(|{fi

e}⊥|)

Calculate the vertical components of the 
other load cases ,{fi

e}⊥ Select as a load basis case

 Complete the selection of load basis cases

Standardize all load cases,{fi
e}

no

yes

 
Figure 2: Flowchart of load basis cases selection 

 

Selection of basis strains. The candidate strain set refers to the set of strain measurements that can be 

allowed to be arranged on the target structure, which in principle should be as dispersed as possible 

and have a large response to the loading region of interest. 

 

The original strain distribution matrix [AG,M]=({α1},{α2},...,{αG})T is constructed based on the 

candidate strain set and the design load cases, where {αj}T denotes strain row vector of the jth strain 

measurement at all design load cases, M is the number of design load cases, and G is the number of 

strain measurements in the candidate set. 

 

With a strain selected as the initial basis strain, g basis strains can be stepwise selected from the 

candidate strain set to construct basis strain matrix [Ag,M] using Schmidt orthogonalization of the 

maximum vertical distance. The difference from selection of load basis cases is that the load column 

space is replaced with the strain row space, and the process is shown in Figure 3, where {αj}T is 

represented by <αi> for ease of presentation. 
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Select an initial strain, g=1

Build g-dimensional strain row space g =g +1

 max(|<αi
e>⊥|)  >α?

Choose the candidate strain     
corresponding to  max(|<αi

e>⊥|)

Calculate the vertical components of the 

other candidate strains ,<αi
e>⊥ Select as a basis strain

 Complete the selection of basis strain

Standardize all candidate strain,<αi
e>

no

yes

 
Figure 3: Flowchart of basis strains selection 

 

Assuming that the number of strain measurements is limited to s in practical applications (s≥mf should 

be satisfied), if s≥g, the strain measurements can be directly taken as g basis strains; if s≤g, the first s 

basis strains are selected according to the selecting order. For the convenience of presentation, g and s 

are no longer distinguished in the later section, and the basis strain matrix is denoted by [Ag,M]. 

 

Selection of strain basis cases. According to the basis strain matrix [Ag,M]=({ε1},{ε2},...,{εM}), where 

{εi} denotes the column vector of basis strain distribution at the ith load case, mε strain basis cases can 

be stepwise selected from the design load cases on the basis of the mf load basis cases using Euclidean 

space method, and the influence coefficient matrix [Ag,mε] is constructed. The process is shown in 

Figure 4, and the key is that the strain basis cases need to include the load basis cases (mε≥mf). The 

detailed steps are described in the literature [4] and will not be repeated here. 

 

 Take load basis cases as the initial strain 
basis cases, mε=mf

Build mε-dimensional strain columm space mε=mε +1

 max(|{εj
e}⊥|)>α?

Choose the strain case     
corresponding to  max(|{εj

e}⊥|)

Calculate the vertical components of the 
other strain cases ,{εj

e}⊥ Select as a strain basis case

 Complete the selection of strain basis cases

Standardize all load cases,{εj
e}

no

yes

 
Figure 4: Flowchart of strain basis cases selection 
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CASE STUDY 
 

Based on the load rams and fiber optic sensor data in a wing fatigue test in the literature [4], the 

feasibility of using the optimization procedure of selecting strain measurement locations with a limited 

number of strain measurements described as above is verified, and the load distribution under each test 

load condition is predicted with the measured strain distribution as input. Then, the predicted load 

distributions are compared with the actual values of load rams. The accuracy of load prediction is 

further compared and analyzed under different number limitations (unrestricted, 60 and 30) of strain 

measurements and different strain measurement error assumptions (zero error, 2% random error, 5% 

random error, and actual error). 

 

In the fatigue test spectra, there are 749 independent load cases (i.e. M=749), 24 load rams that have 

applied loads through whiffletree to the lower wing surface (i.e. n=24), 4 main beams with fiber optic 

sensors along the span direction, and 116 effective strain measurements (excluding damaged/abnormal 

strains), which are used as the candidate strain set in this example (G=116). To eliminate the influence 

of strain measurement errors on the process of determining the influence coefficient matrix, the mean 

value of multiple measurements at the same load case is taken for each candidate strain measurement 

to obtain the original strain distribution matrix [A116,749]. 

 

Following the implementation steps described in Section 2, firstly, 23 load basis cases (mf=23) are 

selected according to the distributed load matrix [P24,749], with the maximum wing bending moment 

case taken as the initial case and the error threshold taken as 1/10 of the minimum standard deviation 

after the standardization of all load vectors. Figure 5 illustrates the load distribution at the first two 

load basis cases with dimensionless axes, STA indicating the heading station and BL indicating the 

span station. 

 

   
          (a) Initial load basis case                             (b) The second load basis case 

Figure 5: Illustration of load basis cases 

 

Assuming that the number of strain measurements is limited to 60 (g=60), basis strains are stepwise 

selected according to the original strain distribution matrix [A116,749] with the strain measurement at the 

root of the lower stringer of a main beam as the initial strain and the error threshold taken as 1/10 of 

the minimum standard deviation after the standardization of all strain vectors, and the basis strain 

matrix [A60,749] is determined. The comparison of basis strains with the candidate strain set is shown in 

Figure 6, where the blue dots indicate strain measurements located at the upper stringer of the beam, 

and the red dots indicate strain measurements located at the lower stringer of the beam. 
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           (a) 116 candidate strains                                      (b) 60 basis strains 

Figure 6: Comparisons of basis strains and candidate strain set 

 

Then, 52 strain basis cases are stepwise selected according to the basis strain matrix [A60,749], and a 

possible influence coefficient matrix [A60,52] and basis load matrix [P24,52] are determined. Next, 

det([A]T[A]) is calculated, and the above process of basis strains selection ( changing the selection of 

initial basis strain) and strain basis cases selection is repeated. Finally, the combination of basis strains 

and basis cases with the largest determinant is finally preferred, i.e., the optimal influence coefficient 

matrix and basis load matrix are determined. 

 

Assuming that the load distribution {fi} at test load cases is unknown and only the strain distribution 

{εi} at each case is known, the Tikhonov regularization method [10] is used to calculate {β} according 

to Eq. (1), and then {β} is substituted into Eq. (2) to predict the load rams at test load cases. Figure 7 

illustrates the comparison between the predicted and actual values of load rams at two load cases (not 

the 52 strain basis cases), where the blue line indicates the actual value and the red line indicates the 

predicted value. 

 

         
(a) Case 53#                                                  (b) Case 54# 

Figure 7: Comparisons of predicted values and actualvalues of load rams 

 

The overall component loads (including wing root shear/bending moment/torque, control surface 

shear/hinge moment) can be further calculated based on load predictions and positions of the 

actuatorload distribution recovery method.  

 

The root mean square(RMS) error  between the predicted and actual values of component loads is 

calculated to measure the accuracy of load distribution recovery method. The formula is as follows: 

 
2 2( ) /RMS act pred actError f f f= −                                                            (4) 

 

where, fact is the actual load value and fpred is the predicted load value.  

 

Different numbers of strain measurements. In this section, the differences of load prediction 

accuracy for 749 load cases under different number limititations of strain measurements are compared, 

such as unrestricted, 60 and 30. In all instances, the strain distribution is assumed to be free of 

measurement error , i.e., the mean of multiple measurements at the same case is taken.                                                                              

 

a) For the unrestricted number of strain measurements, the process is detailed in the literature [4], 

and the influence coefficient matrix [A116,82] and the basis load matrix [P24,82] are determined. 
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b) For the number of strain measurements limited to 60, the influence coefficient matrix [A60,52] and 

the basis load matrix [P24,52] are determined with the steps as described above. 

 
c) For the number of strain measurements limited to 30, the influence coefficient matrix [A30,30]and 

the basis load matrix [P24,30] are determined with steps similar to b). 

 
Figure 8 plots the predicted values versus actual values of component loads, with the actual values in 

the horizontal coordinates, the predicted values in the vertical coordinates. In the figure, each data 

point represents a load case and HM indicats hinge moment. 

 

 
(a) 116 strain measurements          (b) 60 strain measurements 

 
(c) 30 strain measurements 

Figure 8: Comparisons of the predicted and actual values of component loads 

 

The root-mean-square error between the predicted and actual values of component loads is calculated 

according to Equ. (4), and the results are compared in Figure 9. 
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Figure 9: Comparisons of load prediction error under different numbers of strain measurements 

 

Different strain measurement errors. In this section, the differences of load prediction accuracy for 

749 load cases under different strain measurement errors are compared, such as zero error, 2% random 

error, 5% random error and actual measurement error. In all instances, the number of strain 

measurements is limited to 60. 

  

a) zero measurement error, which means that strain distribution at each load case is taken as the 

mean value of multiple measurements at the same case; 

 
b) 2% random error, which means that strain distribution at each load case introduces a 2% random 

error on the basis of the mean value; 

 
c) 5% random error, which means that strain distribution at each load case introduces a 5% random 

error on the basis of the mean value; 

 
d) Actual measurement error, which means that strain distribution at each load case is taken as the 

actual measured value (each case occurs multiple times in the load spectrum). 

 

The root-mean-square error between the predicted and actual values of component loads is calculated 

according to Equ. (4), and the results are compared in Figure 10. 
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Figure 10: Comparisons of load prediction error under different strain measurement errors 

 

Discussion. Through comparative analysis of the load recovery results in the case study, it can be seen 

that: 

 

a) The component load prediction accuracy is ranked as: wing > flap > outer aileon > inner aileon. 

The poor accuracy of aileron load prediction is as expected, because the fiber optic sensors in this 

example are only arranged on the stringers of main beams, and the response of these strain 

measurements to the aileron load is small. If the aileron load is of interest, the strain measuremens 

in the aileron area should be increased, and then the accuracy of aileron load prediction will 

improve; 

 

b) The accuracy of load recovery decreases as the number of strain measurements decreases, and it 

is recommended that the number of strain measurements be at least twice the number of basis 

load cases in practical applications. 

 

c) The actual measurement error of strain is slightly less than 2% random error, so the accuracy of 

load recovery with actual measurement error is slightly better than 2% random error. 

 

d) The load prediction accuracy based on strain distribution is higher than that of traditional 

component load calibration based on strain bridges. With the number of strain measurements 

limited to 60, the prediction error of component load with actual strain measurement error is <2% 

for wing root bending moment, <3% for wing root shear, and <10% for wing root torque; while 

for strain bridge-based component load calibration, the error of component load prediction is 

usually <5% for wing root bending moment, <10% for wing root shear, and >20% for wing root 

torque. 

 

CONCLUSION 
 

In this paper, an in-depth study on how to select strain measurement locations under the limited 

number of strain measurements is conducted, and an optimization procedure of of selecting strain 

measurement locations centered on basis strains selection is proposed, which is matched with the 

Euclidean space method proposed in the previous study. The optimization process is validated using 

the load rams and fiber optic sensor data in a wing fatigue test, and is summarized as follows: 
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a) The optimization process centered on basis strains selection and matched with Euclidean space 

method can provide highly accurate and robust load predictions, and the prediction accuracy is 

higher than that of the traditional strain bridge-based component load calibration method; 

 
b) With the decrease of the number of strain measurements, the accuracy of load recovery is 

reduced. It is recommended that the number of strain measurements be at least twice the number 

of basis load cases in practical applications. 
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