
31st ICAF Symposium – Delft, 26-29 June 2023 

 

 

J.C. Sobotka et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United 

States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and 

source (in this case: Proceedings of the 31st symposium of ICAF - the International Committee on Aeronautical Fatigue and 

Structural Integrity, Delft, 26-29 June 2023) are credited. 

 

 

 

 

PAST, PRESENT, AND FUTURE STRESS-INTENSITY 

FACTOR SOLUTIONS FOR CRACKS AT HOLES 
 

 

James C. Sobotka1, R. Craig McClung2, Yi-Der Lee2, and Joseph W. Cardinal2 

 
1 Southwest Research Institute® (SwRI®), USA, james.sobotka@swri.org 

2 Southwest Research Institute (SwRI), USA 

 

 

 

Abstract: This document summarizes advances in stress-intensity factor (SIF) solutions 

for cracks at holes, set in the historical context of the past forty years and current 

problems that demand new, novel solutions to support damage tolerance (DT) 

assessments. Special attention is given to corner cracks since they are usually the initial 

crack state and often dominate total DT lifetime.   

 

Classic solutions by Newman and Raju (1980s) and Fawaz and Andersson (2000s) 

supported wide plates, requiring separate finite-width correction factors for practical 

applications. While the Newman-Raju correction factors were state of the art for their 

time, they have significant limitations. Our recent developments feature new equations 

with improved accuracy for tension, bend, and pin-loading for single or dissimilar double 

cracks. Post-transition scenarios led us to develop novel compounding solutions for 

corner-through or dissimilar through-through crack combinations, building on 

formulations from NRC-Canada (late 2000s). 

 

Weight function (WF) solutions address the practical challenge of finite-geometry 

effects in a different way. Our WF formulation employs analytical basis functions 

coupled with large matrices of reference solutions over the range of finite widths and 

offsets. More importantly, the WF approach handles additional stress states besides 

uniform remote loading and permits explicit treatment of residual stress, including 

shakedown residual stress from local plasticity. Most WF solutions are based on stress 

gradients in a single direction, but because stresses at the corner of a hole are inherently 

bivariant, we have also developed a WF solution that accommodates stress gradients 

varying in all directions on the crack plane of a corner (or a surface) crack.  

 

Current DT challenges involve physical issues that may not be tractable using 

conventional approaches. These challenges include cold expansion, 

interference/clearance fits, manufacturing-induced residual stress, nonlinear material 

response, out-of-plane bending, multi-hole interaction, and multi-crack interaction that 

could be characterized as multi-site damage. Our recent efforts exploit advances in 

curved through-crack descriptions, principal component analysis, automatic generation 

of crack fronts for finite element analyses, and machine learning via Gaussian Process 

models. These tools are leading to incremental advances to support cracks at a row of 

holes, interference fit for through cracks, and tractable calculations of bivariant stresses 

near stress concentrators under remote loading. 

 

Keywords: Stress-Intensity Factor Development; Damage tolerance; Weight function; 

Corner crack 
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INTRODUCTION 

 
Circular holes, rows of holes, small holes next to large holes, and rows and columns of holes are 

ubiquitous in airframes. The hole geometry itself elevates stresses above the baseline stresses in the 

surrounding material. Manufacturing a hole can introduce defects that may not be eliminated by 

additional operations. Further complicating matters, holes often carry pins, bolts, rivets, and other 

fasteners that induce nonlinear local stresses from contact that contributes to fatigue crack formation 

from various processes, e.g., wear or corrosion. These features promote the initiation and growth of 

fatigue cracks under cyclic loading histories. If these cracks fracture, it may jeopardize structural 

integrity, i.e., holes in an airframe often represent fatigue-critical locations. Consequently, certification 

authorities require damage tolerance (DT) analyses at many holes in an airframe.  

 

Practical stress-intensity factor (SIF) solutions are needed to support these DT assessments. Here, we 

distinguish a practical solution from a higher-fidelity solution. The practical solution will be applied at 

potentially thousands of locations in an aircraft and may need to incorporate possible variations in the 

loading spectrum, material, environment, and initial crack state. Consequently, the practical solution 

must be fast, robust, physically-realistic, and accurate if a bit on the conservative side. These 

considerations do not apply for a higher-fidelity, multi-point fracture assessment based on 3D finite 

element analyses that will typically be focused at a location with less uncertainty. 

 

Of the practical SIF solutions at holes, corner cracks take priority over surface cracks, through cracks, 

and embedded cracks. Practical DT assessments idealize the corner crack as a quarter-elliptical crack 

front placed at the intersection of the hole and free surface. Corner cracks are often taken as the small 

initial crack in a DT assessment, and the bulk of fatigue crack growth (FCG) life at a hole happens in 

the corner crack configuration as a result. Similar analyses with an initial surface crack centered in the 

bore or an initial embedded crack would result in much longer lives relative to a corner crack. An initial 

through crack would need to be so small as to be physically unrealistic. Initial cracks set as corner cracks 

balance physical reality (initial cracks are small) and conservatism (they grow quickly).  

 

Here, we focus on the development of practical SIF solutions for corner cracks at circular holes over the 

past forty years. During that time frame, a variety of solutions have appeared in the open literature and 

in proprietary DT tools. Different solutions support different sets of geometric bounds, enable different 

loading capabilities, have different formulations, and feature different levels of accuracy. Consequently, 

an analyst working with, for example, the fracture and FCG software NASGRO® [1] can select from 

eight SIF solutions for various combinations of a corner crack at a round hole in a plate: CC08 

(univariant weight function (WF)), CC10 (early generation bivariant WF), CC26 (later generation WF), 

CC15 (adds a broken ligament), CC16 (data-table look-up), CC17 (two unequal corner cracks), CC24 

(a row of holes), and CC25 (countersunk hole). Additionally, there are two solutions for a corner crack 

in a lug (CC19 and CC23), one hybrid solution for a corner crack and through crack (HC01), and four 

legacy superseded solutions for similar geometries (CC02, CC03, CC04, and CC07).  

 

The proliferation of SIF solutions for similar or even identical geometries causes confusion for analysts, 

developers, and certifying authorities. As is often the case, the various SIF solutions reflect a historical 

development whereby the capabilities, accuracy, and speed of earlier solutions are refined by later 

solutions. As a result, this paper approaches the various SIF solutions from a similar historical 

perspective. First, we review classical approaches to this problem that rely on large data tables of cracks 

at holes in wide plates and the accompanying finite-width correction factors. We detail issues that have 

resulted from this formulation and their resolution. Second, we discuss weight function (WF) approaches 

to the problem that support arbitrary stress gradients and permit wider capabilities. The next section 

demonstrates and discusses the variability of nominally identical life predictions made using the 

different solutions. Afterwards, we review corner crack SIF solutions near round holes that feature some 

deviation from the standard geometry, e.g., a countersunk hole. We then review some recent innovations 

in the practical development of SIF solutions. Finally, this document finishes with a review of future 

avenues of research and development. 
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CLASSIC SIF SOLUTIONS 
 

This section focuses on two classical solutions: the 

Newman-Raju (NR) solutions [2] and the Fawaz-Andersson 

(FA) solutions [3]. These solutions approach the problem 

using similar methods: Develop a SIF solutions for wide 

plates and apply independent finite-width correction factors 

to address finite-width plates with offset holes that reflect 

real geometries. The original finite-width correction factors 

have been shown to be flawed for certain geometries and 

require revisions as discussed in this section. Figure 1 shows 

the basic geometry used in these analyses. 

 

Newman-Raju Solutions 

 
In 1979, Raju and Newman [3] developed quarter-symmetric 

finite element models of two identical corner-cracks at a hole 

in a plate. SIF values from these geometries could then be 

converted to a single corner crack at hole using the Shah 

correction factor [4]. This approach enabled analyses that 

varied crack shape (𝑎 𝑐⁄ = 0.2, 1, 2), size (𝑎/𝑡 =
0.2, 0.5, 0.8), and hole thickness (𝐷/2𝑡 = 0.5, 1) for wide plates with remote loading. Raju and 

Newman performed 18 total analyses with some geometries having up to 9300 degrees of freedom. 

These solutions included remote tension (𝑆0), remote in-plane bending (𝑆1), and a wedge loading that 

could (with some assumptions) be converted into a pin loading (𝑆3).  

 

These analyses center the hole in a very wide plate. This approach prevents the direct applicability of 

these solutions to real geometries with finite-sized holes (𝐷/2𝐵 ≥≈ 10% − 20%) and holes that are 

offset in the geometry. Consequently, Newman and Raju developed a set of finite-width and offset 

correction factors [5]. Furthermore, these papers include a series of closed form (empirical) expressions 

that permit users to determine SIF values at cracks not included in the original (very) sparse matrix. The 

NR solutions have been extensively used in design and analysis since their original release. In recent 

versions of NASGRO, they form the basis for CC02, which is now categorized as a superseded solution. 

Despite the primitive computational capabilities in their development, the NR solutions have decent 

accuracy for most applications and have been used successfully for many years to perform DT analyses 

on many practical structures. 

 

Fawaz-Andersson Solutions 
 

The FA solutions [3] provide the next set of landmark solutions. Computational capabilities increased 

by nearly 400X in the 25 years between the NR solutions and the FA solutions. The FA database features 

7150 combinations of 𝐷/2𝑡, 𝑎/𝑡, and 𝑎/𝑐 (vs. 18 solutions for NR). Each solution represents the result 

from the hp-version of the finite element method to achieve an exponential convergence of the SIF value 

along the crack front. The authors extend the numerical results with a splitting approach that permits 

them to solve for the SIF solutions of two unequal corner cracks at a hole, and this second database has 

226,875 SIF solutions. Results shown by FA demonstrate the fidelity of the NR solutions for some cases 

and indicate problems (perhaps due to extrapolation) with other cases. In NASGRO, the FA results are 

the basis for CC16 (single crack at a hole) and CC17 (two unequal cracks at a hole). 

 

Recent Modifications 
 

It has been recognized for some time that the original NR solutions required some updating [6]. 

Consequently, Newman released an updated version of the NR equations more suitable for deep cracks 

[7]. It is less well known that the finite-width correction factors (𝐹𝑊,𝑖) and offset correction factors (𝐹𝑂,𝑖) 

 
Figure 1: Corner crack configuration 

subjected to various loads. 
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require some fine-tuning to align the SIF values for wide plates with the SIF values for finite-width 

geometries. In both the NR and FA solutions (described as geometry correction factors 𝛽𝑖), the resolved 

SIF value can be computed as shown in Eqn. 1 using the three loading components 𝑖 = 0,1,3: 

 

𝑆𝐼𝐹 = ∑ 𝐹𝑊,𝑖 × 𝐹𝑂,𝑖 × 𝛽𝑖 × 𝑆𝑖√𝜋𝑎

𝑖=0,1,3

. (1) 

 

Detailed analyses of single corner cracks at holes in finite-width plates revealed issues for certain crack 

configurations. As a result, more accurate solutions for 𝐹𝑊,𝑖 and 𝐹𝑂,𝑖 have been developed. Guo 

determined simple corrections to 𝐹𝑊,𝑖 for remote tension and bend [1]. Sobotka considered pin-loading 

and found that 𝐹𝑊,𝑖 and 𝐹𝑂,𝑖 needed to be combined into a single function. He constructed this function 

by interpolating over results from a large database of solutions derived from WF SIFs. Figure 2 shows 

the improvement in the finite-width correction factor using the approach outlined by Guo.  

 

 
 

Figure 2: Old and new finite-width correction factors for the a-tip and c-tip under 𝑆0 loading. 

 

 

MODERN WEIGHT FUNCTION SOLUTIONS 
 

Besides the issues highlighted in the previous section, both the NR and FA solutions suffer from several 

restrictions that motivated subsequent developments: 

 

• Limited to ideal scenarios of uniform tension, out-of-plane bending, and pin loading; 

• Cannot support high-load levels that would trigger yielding localized near the hole; 

• Do not support local residual stresses, e.g., from cold expansion. 

 

These capabilities are particularly important for practical structural analysis of cracks in complex stress 

fields. Weight function (WF) solutions provide an alternative approach to the curve fits and data tables 

generated in the earlier efforts. WF solutions enable analysts to determine SIF values for arbitrary stress 

fields, including the stress fields in the earlier bullets. Furthermore, the WF solutions have been shown 

to be extremely robust and require fewer analyses for calibration than classical data table solutions. 

Consult Wu [8] for a comprehensive review of recent WF approaches. 

 

Theory 
 

WF solutions were originally developed by Bueckner [9] and Rice [10]. Specifically, these researchers 

determined that the SIF of one cracked body under some loading was related to the SIF of the same 

cracked body under a different loading. Here, the transfer function from the first SIF (with displacement 

field 𝑢𝑖
1𝑠𝑡) to the second SIF depends on (1) 𝜕𝑢𝑖

1𝑠𝑡/𝜕𝑎, where 𝑎  is the crack length and (2) the tractions 

(excluding body forces) needed to close the crack face under the second loading condition. This result 

is derived from energy arguments and applies to any crack in a linear-elastic material. Tractions may be 

determined based on the stresses in the uncracked body, and, as a result, WFs are typically valid only if 
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the crack does not trigger load redistribution. Besides this restriction, the WF approach is extremely 

general and has been applied to a wide variety of geometries, loadings, and other configurations. 

 

One useful way to define WF solutions is to distinguish between univariant WFs and bivariant WFs. 

Univariant WFs enable the stress to vary in one direction that is often referred to as the primary stress 

direction. Bivariant WFs enable the stress to vary across the full 2D crack plane. For cracks near a hole, 

bivariant WFs may be needed if stress gradients vary strongly through the thickness, i.e., thick plates.  

 

The general form of a univariant WF solution (𝑤(𝑥, 𝑎)) may be expressed as follows in Eqn. (2): 

 

𝑆𝐼𝐹 = ∫ 𝜎
𝑎

0

(𝑥) 𝑤(𝑥, 𝑎) 𝑑𝑥. (2) 

 

In this expression, 𝑎 is a measure of crack length or depth, and 𝜎(𝑥) denotes the stress component 

normal to the crack surface derived from the uncracked body and varying along the primary direction 

of crack extension 𝑥. Eqn. (2) indicates that the SIF is found by integrating the stress in the uncracked 

body over the “shadow” of the crack front. The stress gradient is arbitrary. It can include contributions 

from remote loads, yielding, and residual stresses. The stress gradient may be written as a closed-form 

expression, a combination of polynomials (or other functions), or as a table of stress-distance pairs. A 

bivariant WF solution extends the weight function to consider stress variations in both the primary and 

secondary directions. It is integrated over the area of the crack front. Quadrature of the area integral 

requires additional computational effort. 

 

Implementation 
 

Our efforts have shown that the generalized WF proposed by Shen and Glinka [11] provides a reasonable 

approach to develop univariant WFs as shown in Eqn. (3): 

 

𝑤(𝑥, 𝑎) =
2

√2𝜋(𝑎 − 𝑥)
[1 + 𝑀1 (1 −

𝑥

𝑎
)

1
2

+ 𝑀2 (1 −
𝑥

𝑎
) + 𝑀3 (1 −

𝑥

𝑎
)

3
2

] . (3) 

 

Here, 𝑀1, 𝑀2, and 𝑀3 represent parameters dependent on the particular crack geometry of interest. They 

are usually determined from reference SIF values computed by finite element analyses. The reference 

parameters are determined at several crack plane loading conditions. The physical basis of the 

underlying WF formulation stabilizes the interpolation of reference solutions and enables analysts to 

calibrate the WF using many fewer solutions than needed for the FA database. Such effectiveness can 

be shown by comparing the 7150 solutions in the FA database that only supports wide plates vs. the 

univariant WF solution in NASGRO (CC08) that only uses 1674 solutions to calibrate the WF solution 

that considers finite-width plates and offset holes for an extensive range of geometries.  

 

Bivariant WF solutions are more sophisticated than the expression shown in Eqn. (3), As documented 

by Lee [12], a bivariant WF solution for a corner crack at a hole also involves several issues related to 

numerical integration and efficiency. A bivariant WF solution was originally released in NASGRO v5.0 

as CC10. The range of geometries supported by CC10 aligned with the geometries in gas-turbine engines 

and, while the range of geometries was somewhat restricted, CC10 only required 72 reference solutions 

to calibrate the WF solution.  

 

Verification 
 

Recent advances in automation (discussed below) enable analysts to generate large sets of models 

economically. These capabilities have been employed to verify features of the existing solutions that 

were not possible previously. For example, earlier verification routines often reused the same geometries 

during verification that were used to calibrate a solution. The difference between the two analyses would 
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be the applied loadings to the verification tests. This approach would not test how the interpolation 

scheme predicted new geometries not employed during calibration.  

 

A modern approach to verification is presented in Sobotka and McClung [13]. Here, the infinite set of 

geometric configurations supported by a SIF solution are sampled using Latin Hypercube Sampling 

[14], a space-filling design that bins the solution space based on the number of samples. This process 

results in a design of experiment (DOE) that is independent of the original DOE used the calibrate the 

solution. A series of relevant remote loadings and orthogonal stress gradients (applied to the crack faces) 

are selected as well to complete the DOE. SIF values in the DOE are then determined by finite element 

analyses as the baseline or actual SIF values (𝑆𝐼𝐹𝐹𝐸𝐴) and using the practical SIF solution as the test 

value (𝑆𝐼𝐹). Relative errors can then be computed as 𝑅𝐸 (%) = (𝑆𝐼𝐹 − 𝑆𝐼𝐹𝐹𝐸𝐴)/𝑆𝐼𝐹𝐹𝐸𝐴 × 100, and 

these relative errors form a cumulative distribution of error if they are plotted as a rank ordering. 

 

Figure 3 shows an example from this process. This result features SIF values computed at the a-tip for 

four different crack plane loadings given by P00 (uniform stress), P01 (linear stress in the c-tip 

direction), P10 (linear stress in the a-tip direction), and P11 (linear stress in both the a-tip and c-tip 

direction). The left-hand subplot shows the cumulative error plots from 500 geometries per loading 

condition for CC10. It has good accuracy given its age and number of reference solutions. However, the 

automation capability used to verify this geometry can also be used to generate a new set of reference 

solutions at limited cost. Consequently, we generated a larger set of reference solutions (748 vs. 72 for 

CC10 for the same geometric range) and defined the resulting bivariant WF SIF solution as CC26. This 

solution is shown on the right. More than 90% of CC26’s solutions have less than 5% error. CC26 is 

slightly conservative with a median error value of 1%. A handful of solutions with errors >5% represent 

unusual combinations of crack shapes and sizes in plates with extreme values of thickness, hole size, 

and hole offset not likely to be encountered in practice. Note that while this approach to verification 

presumes errors, the variability measured in these solutions is much lower than the uncertainties 

associated with other inputs to the DT assessment, e.g., the loading spectrum or crack growth rate. 

 

 
 

Figure 3: Verification plots for SIFs at the a-tip of CC10 (left) and CC26 (right). 

 

 

COMPARISONS AND DISCUSSION 
 

Thus far, we have mentioned five SIF solutions available in NASGRO for nominally the same geometry 

that is shown in Figure 1: 

 

• CC02 – The classical Newman-Raju solution that is now “superseded”. 

• CC16 – The Fawaz-Andersson solution with modified finite-width correction factors. 

• CC08 – A univariant weight function solution. 

• CC10 – A bivariant weight function solution with a small number of reference solutions. 
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• CC26 – A bivariant weight function solution with a larger number of reference solutions. 

 

Without going into details, these solutions differ by more than their formulations and their pedigree. The 

most important features of a solution for practical analysis are the range of available geometries and the 

available loading conditions. Geometric limits may be restricted (CC02 and CC10) or expansive (CC08, 

CC16, and CC26). Loading conditions vary by solution. CC02 and CC16 only support 𝑆0, 𝑆1, and 𝑆3 

loading. CC08 directly supports 𝑆0, 𝑆3, and 𝑆2 loading, with 𝑆2 reflecting in-plane bending. CC26 

directly supports all four remote loading conditions, whereas CC10 does not support any remote loading 

natively, though it may be supplied with the appropriate stress gradient. Furthermore, the WF solutions 

(CC08, CC10, and CC26) support local yielding and residual stresses.  

 

These SIF solutions predict similar crack growth lives (within 2X of each other) in the following simple 

scenario as shown in Fig. 4. Here, the geometric ratios for the plate are set at 2𝐵 𝑊⁄ = 1 (hole centered 

in plate), 𝐷 2𝐵⁄ = 0.25, and 𝐷 2𝑡⁄ = 1,2, and 4, with one 𝐷/2𝑡 per row in Figure 4. The thickness is 

fixed at 6.35 mm. The initial crack depth is 𝑎 = 0.127 𝑚𝑚 with 𝑎 = 𝑐. FCG rates are defined using the 

NASGRO equation v4.0 set by material properties for 7075-T6 Plate material. The loadings have been 

generated using a constant amplitude spectrum with 𝑅 = 0.1 and only one remote loading active per 

column. Figure 4 plots the crack depth (at the 𝑎-tip) and does not reflect the total predicted life that may 

be extended by a transition to a through crack solution. For this scenario, the various corner crack models 

generally reach consensus on the predicted life. Predicted lives converge as the plate becomes thinner 

(i.e., 𝐷 2𝑡⁄  increases). The NR solutions (CC02) represent an outlier in the current predictions with more 

conservative life predictions for 𝑆0 and 𝑆3 loading. For out-of-plane bending (𝑆1), the bivariant WF 

solutions diverge from the data table solutions, perhaps due to the WF solutions picking up the negative 

stresses across the thickness. Of the solutions presented here, only CC26 supports all remote loading 

conditions, features an extensive geometry, supports shakedown, and enables residual stresses. 

 

 
Figure 4: Life predictions showing the general agreement of five corner-crack SIF solutions. 
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GEOMETRIC VARIANTS 
 

While the ideal geometry presented in Fig. 1 happens in practice, it is quite common for the idealized 

geometry to be combined with some additional feature. For example, multiple cracks may interact at the 

same hole and either increase or decrease FCG rates. In addition, a FCG assessment may result in crack 

transitions from corner cracks to through cracks. This section details these considerations and describes 

approaches to incorporate them into practical FCG assessments. 

 

Multiple Cracks at One Hole  

 

An earlier section mentioned the FA solution for two unequal cracks at a single hole and the large 

number of analyses required to support it. When this solution was implemented, it was noticed that some 

entries had unrealistic numbers that suggested data corruption. These entries were replaced using a 

scheme that replaced corrupt entries with entries that would be reproduced by interpolation using nearby 

entries. Practical analysis using this database required correction factors for finite-width plates and offset 

holes modified by an equivalent hole method (see the documentation of [1]).  

 

To date, this solution represents one of the few solutions available for analysts to examine the impact of 

multi-site damage. Additional solutions have not been developed due to the excessive number of 

solutions that would be needed to populate the calibration matrix. Instead, analysts often need to rely on 

compounding approaches that approximate the unknown SIF values at multiple cracks using the known 

SIF values at similar geometries. Bombardier and Liao [15] provide one such solution for two unequal 

through cracks at a hole offset in a plate using a compounding method. The authors have extended the 

compounding approach [16,17] to more general problems as well.  

 

Continuing Damage after Crack Transitions 
 

Corner cracks transition to through cracks after one tip reaches the free surface, i.e., 𝑎 → 𝑡. The exact 

depth at which crack transitions differs from one solution to another, with typical transition limits being 

between 90-99% of the thickness. Solutions with different transition criteria often have similar overall 

lives since the crack usually spends few cycles once the crack depth is on par with the thickness.  

 

After the crack transitions, the new solution typically enforces a straight crack front for the remainder 

of the analysis. This approach limits the available loading scenarios that can be considered since out-of-

plane bending could induce a curved crack front and different SIF values at the front surface and back 

surface. Early through crack solutions adopt a simple (though perhaps too simple) fix of approximating 

the driving force for the out-of-plane bending by applying half the value of the SIF solution for uniform 

tension. This ad-hoc approach lacks a physical basis. More recent developments enable curved-through 

crack fronts that permit a realistic evolution of the crack front under out-of-plane bending.  

 

There are several available transition paths for multi-site damage for corner cracks at a hole. If both 

corner cracks break through the back face at the same instant, then the Bombardier and Liao solution 

[15] provides a reasonable transition path. It is more likely that the primary crack will break through the 

thickness before the secondary crack, and this scenario results in a hybrid crack geometry with a corner 

crack and a through crack. Again, a compounding solution represents a viable approach. Finally, the 

through crack could break through a ligament, resulting in a single corner crack once again. This 

scenario can be treated by combining the relevant stresses with a WF solution corrected for the effective 

sectional width. Here, new stresses on the single ligament must be computed due to load redistribution. 

 

Countersunk Holes 
 

Countersunk holes remove material from the outer face of the plate to form a conical entry so that a 

fastener head lies flush against the plate. Cracks may develop at either the faying surface or at the knee 

of the countersink. The countersunk hole alters the driving forces for crack growth and changes the 



Past, Present, & Future SIF Solutions for Cracks at Holes 

The 31st symposium of ICAF – the International Committee on Aeronautical Fatigue and Structural Integrity 

9 

transition path since a crack may encounter multiple combinations of the countersunk hole itself, the 

straight bore, and the free surface. The countersunk angle varies for different applications. 

 

Cronenberger [18] provides a SIF solution for a countersunk hole if the hole is far from all other 

boundaries. It only supports remote uniform tension. Crack tips are located on the knee and on the 

countersunk hole, or the crack tips can be located at one free surface and on the countersunk hole. The 

countersunk angle is fixed at 100°. This solution may extend other solutions with compounding.  

 

Rows of Holes 
 

Rows of holes are quite common in aerospace applications. For small cracks, small holes, and holes 

spaced far apart, the geometry shown in Fig. 1 results in SIF values that are essentially identical to the 

SIF values in a row of holes. Compounding methods could be used to approximate a SIF solution using 

a corner crack solution and a solution for a through crack at a row of holes. This method may have 

difficulties approximating the SIF at the 𝑎-tip.  

 

Recently, an alternative solution was generated using new finite element analyses of a 3D corner crack 

at a hole in a row of holes. It supports the three loading configurations shown in Fig. 1 and supports 

three crack cases: two identical cracks at every hole; two identical cracks at one hole; and one crack at 

one hole. The new solution uses a Gaussian Process (GP) model (described later in this work) to 

interpolate between known solution values. This approach simplifies model development and reduces 

the computational effort that would be needed either to perform a full-factorial DOE or to produce a WF 

solution from scratch. Ongoing efforts are generating a curved-through crack solution to accompany the 

corner crack solution post-transition. 
 

Pin Loading and Interference Fit 
 

For 𝑆3 loading, most SIF solutions feature a neat-fit pin inserted into a hole. Classical solutions often 

impose a wedge opening traction on the hole, with the traction defined based on an assumed pressure 

distribution. Using this approach, quarter-symmetric models may be used to generate a new SIF solution 

and to avoid the computational burden of contact iterations. However, various studies [19] show that if 

the pin is modelled as a deformable body, then the traction distribution is a function of the hole size and 

the friction coefficient. Consequently, CC08 and CC26 employ a solution stress computed using a 

deformable pin in contact with a deformable plate. The friction coefficient is set at a constant value of 

0.3, despite its probable variation from this assumed value due to environmental, material, and wear 

during loading. Unfortunately, the actual value of the friction coefficient is not well characterized and 

not measured during loading. It should also be noted that SIF solutions are generally produced for open-

hole configurations except when generating SIF solutions for pin-loading. Investigations by [20] 

indicate that this approach may be somewhat conservative. 

 

In most SIF solutions with pin loading, increasing the pin loading results in a corresponding linear 

increase in the SIF solution. Recent investigations [1] demonstrate that the SIF solution depends on the 

magnitude of the applied loading for an interference-fit pin condition. These studies indicate that 

inputting residual stresses from the interference fit to a WF solution does not result in an accurate SIF 

solution. There is a nonlinear response at higher magnitudes of remote loading that pull the pin surface 

from the hole. Instead, a nonlinear SIF solution was developed that modifies the SIF value based on the 

associated loading magnitude. This solution is limited to a through crack and to loading combinations 

that do not generate significant plasticity.  

 

Lugs 
 

Lugs are almost always unique geometries, and at least one designer has made the offhand remark that, 

“Every lug is a unicorn.” It can prove difficult to parameterize a lug for a SIF solution as a result. 

Previous solutions limited lugs to a straight, short geometry under vertical loading. Recently, new lug 

solutions [21] have been developed for an obliquely loaded and tapered lug with a variable height. These 
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solutions support corner cracks and through cracks. The crack location is based on maximum stress 

criteria (either the Mises stress or the maximum principal stress) and if the crack is positioned on a short 

ligament or long ligament. These lug solutions are based on modifications of the univariant WF solutions 

and feature stresses extracted at the appropriate angles.  

 

 

STATE OF THE ART TECHNIQUES 
 

Recent techniques have supported the development of new SIF solutions for corner cracks at holes. 

These techniques reduce the level of effort needed to build a solution and to reduce the data that needs 

to be stored for a solution. These capabilities have resulted in a significant increase in the number and 

fidelity of new SIF solutions. These also permit confidence to be built in these solutions through formal 

verification techniques that quantify the errors inherent in any practical SIF solution. 

 

Nonlinear Interpolation by Gaussian Process Models 
 

As the geometric complexity increases, there is a corresponding increase in the number of non-

dimensional parameters that make new solutions intractable using spline functions constructed from a 

full factorial DOE. Consider a full factorial DOE with (arbitrarily) 10 geometries per non-dimensional 

parameter 𝑛. The number of finite element analyses needed to develop a new solution is then 10𝑛. 

Furthermore, many of these solutions are placed on the boundaries of the non-dimensional geometric 

range that are rarely used in an analysis.  

 

GP models [22] provide an alternative approach to interpolation that reduces the number of required 

solutions. GP models are calibrated to minimize the uncertainty between the function and “training data” 

(i.e., reference solutions) that are irregularly spaced, often based on a DOE generated by LHS. One 

common model used in some solutions discussed here may be written as shown in Eqn. (4): 

 

𝑔(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑝0 + ∑ 𝑝𝑖𝑥𝑖

𝑛

𝑖=1

+ ∑ 𝑟𝑖 × exp (− ∑ (
𝑥𝑗 − 𝑋𝑖𝑗

𝜆𝑗
)

2𝑛

𝑗=1

)

𝑁

𝑖=1

(4) 

 

Eqn. (4) is a general expression with the following inputs and static defined quantities: 

 

• 𝑛 sets the number of non-dimensional geometric parameters; 

• 𝑥𝑖 represents an input non-dimensional geometric parameter, e.g., 𝐷/2𝑡; 

• 𝑁 denotes the number of training points in the model; 

• 𝑋𝑖𝑗 defines a non-dimensional geometric parameter value for one training point; 

• 𝑟𝑖 reflects the residual values at the training points; 

• 𝑝𝑖 and 𝜆𝑗 indicate calibrated regression terms. 

 

GP models are a class of machine-learning algorithms that have several attractive features. For our 

analyses, geometry correction factors defined by GP models require approximately at least 10X fewer 

finite element analyses to achieve a similar level of accuracy that is found in solutions built using spline 

functions. These models also feature a measure of uncertainty that can be used to improve their fit in 

relevant locations. The major drawback of GP models is that these models have more curvature than 

splines in regions with limited amounts of calibration data. Consequently, these models may require 

more investigation to ensure proper physical behaviour than associated models built with splines. 

 

Principal Component Analysis 
 

Principal Component Analysis (PCA) [23] decomposes a vector into orthogonal components that can 

be reconstructed to form the original vector. Furthermore, this PCA process ranks the orthogonal 

components by their contribution to variation of the original vector. Consequently, all PCA components 
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do not need to be stored to produce a reasonable approximation of the original vector. In very recent 

efforts, we have combined the GP models described above with PCA orthogonal components to predict 

the variation of bivariant stress fields near holes as a function of remote loading and geometry: 

 

𝜎(𝜉𝑖 , 𝜂𝑗, 𝑥1, 𝑥2, … , 𝑥𝑛) = 𝜇(𝜉𝑖 , 𝜂𝑖) + ∑ 𝑈𝑘(𝜉𝑖, 𝜂𝑗) × 𝑔𝑘(𝑥1, 𝑥2, … , 𝑥𝑛)

𝑚

𝑘=1

(5) 

Eqn. (5) features the following terms: 

 

• 𝜉𝑖 and 𝜂𝑗 are the 𝑖𝑡ℎ and 𝑗𝑡ℎ points in a non-dimensional 2D grid of the ligament; 

• 𝑥𝑖 represents an input non-dimensional geometric parameter, e.g., 𝐷/2𝑡; 

• 𝜇(𝜉𝑖, 𝜂𝑗) reflects the mean value of 𝜎 at point (𝜉𝑖 , 𝜂𝑗); 

• 𝑚  indicates the number of principal components used in the solution;  

• 𝑈𝑘(𝜉𝑖, 𝜂𝑗) indicates the 𝑘𝑡ℎ orthogonal component from PCA at point (𝜉𝑖 , 𝜂𝑗); 

• 𝑔𝑘 denotes a GP model that provides the contribution to the stress for the 𝑘𝑡ℎ orthogonal 

component given the input non-dimensional geometric parameters. 

 

Early estimates of the database needed to store data for a bivariant stress function suitable for spline 

interpolation indicated that the memory size would exceed the current NASGRO executable. The PCA 

approach outlined here enables the generation of a bivariant stress solution that requires similar storage 

as the univariant stress solution. This new capability has been incorporated into CC26. It may be useful 

to store and process a variety of multi-dimensional data beyond stresses in the future. 

 

Automation 
 

Techniques using GP models and PCA rely on the generation of large databases to identify statistical 

trends and to fit appropriate models. This data is most readily generated by automating the creation, 

execution, and post-processing of finite element analyses. While earlier solutions (i.e., the FA solutions) 

invoked automation procedures to build large databases of models, developing these capabilities 

represented a significant burden. First, the meshing capabilities may have required direct intervention 

on the part of the users. Second, the computational constraints at the time limited the degrees of freedom 

that could be used in an analysis and necessitated detailed convergence studies for each geometry.  

 

In recent years, the scripting capabilities supported by Abaqus, ANSYS, and StressCheck have become 

robust enough to support a variety of models appropriate for SIF calculations [24]. For example, Abaqus 

features a Python scripting capability that permits users to define a CAD model, assign material 

properties, build an assembly, define load steps, assign contact conditions, assign boundary conditions, 

mesh a 3D crack front, execute the analysis, and extract the SIF values across the crack front. This 

process requires only a few thousand lines of Python code, much of which is reusable for subsequent 

analyses. This capability was unavailable in the earlier eras.  

 

Furthermore, computational capabilities available to engineers at large institutions enable analysts to 

execute linear-elastic models with 106-107 degrees of freedom without any hesitation. These models are 

100X-1000X larger than the largest model used to generate the solutions for the NR solution and roughly 

10X-100X larger than the largest models used to generate the FA solutions. Consequently, engineers 

can focus on fine-tuning their analysis procedure rather than focus excessively on convergence.  

 

 

SUMMARY, DISCUSSION, AND FUTURE AREAS OF RESEARCH 
 

This paper surveys SIF solutions for corner cracks at holes in plates. We have focused on the idealized 

geometry in Fig. 1 originally proposed by Newman and Raju. This geometry has been of perpetual 

interest to damage tolerance analysts due to its wide applicability to fracture critical locations. Newman 

and Raju produced the first SIF solution for this geometry, and it may represent the most widely used 
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SIF solution in practice. Fawaz and Andersson extended their solution by developing a large database 

of SIF solutions. Both sets of these classical solutions require a finite-width correction factor to support 

practical DT assessments. Alternatively, weight function solutions provide a method to support arbitrary 

loadings on the crack plane, and the structure inherent in weight function solutions means that they 

require many fewer analyses to calibrate than large databases. Weight function solutions have been 

developed for both univariant and bivariant stress fields that permit analysts to investigate the impact of 

local plasticity, residual stresses, and various remote loading conditions. While these different solutions 

have different formulations, pedigrees, and capabilities, results shown here suggest that modern 

solutions predict lives within 2X of the average value. Given these results, we recommend that the new 

bivariant weight function solution CC26 be considered as a new standard solution for predicting crack 

growth lives. 

 

This work also documents geometries and loading conditions not explicitly covered by the idealized 

geometry with a single corner crack at a straight-bore hole with a neat-fit pin: holes with multiple corner 

cracks, hybrid transition solutions, countersunk holes, rows of holes, interference fit pins, and lugs. 

These common scenarios can be treated by recent SIF solutions with powerful, but incomplete 

capabilities, that can be extended through compounding approaches. We also discuss recent techniques 

that have permitted new solutions and promise to assist new advances in the future: Gaussian Process 

models; Principal Component Analysis; and rapid automation using commercial simulation software. 

 

Over the past forty years, DT assessments have benefited from the efforts of various researchers to refine 

SIF solutions for corner cracks at holes in plates. These efforts have resulted in robust, efficient solutions 

with capabilities that exceed the capabilities of the original Newman-Raju classical solutions. The next 

generation of SIF solutions will need to expand these capabilities to consider persistent issues that, until 

recently, may have been neglected for more urgent concerns: 

 

• Expand weight function methods to treat novel geometries. 

• Increase compounding capabilities to approximate various geometries for design. 

• Treat multiple cracks at holes in plates using the same rigor as single cracks at holes. 

• Enable robust crack transition routes that consider all pertinent features, with a specific focus 

on treating through cracks subjected to out-of-plane bending. 

• Provide solutions for countersunk hole geometries and the associated crack configurations. 

• Consider the impact of rows and columns of holes upon SIF solutions. 

• Evaluate how a filled hole impacts SIF solutions that are now treated as open holes. 

• Add out-of-plane pin loads to the suite of loading conditions. 

• Develop practical engineering methods that treat the influence on interference-fit pins and 

clearance-fit pins on SIF solutions for corner cracks in linear-elastic materials. 

• Increase the above capabilities to consider limited plasticity from an interference fit. 

• Expand the flexibility of solutions to support the broad array of lug geometries. 

• Quantify the uncertainty of a SIF solution by rigorous verification. 

• Propagate uncertainties for the full DT analysis into risk assessments of components. 

• Estimate residual stresses arising from cold-expansion processes using practical methods. 

• Link credible fatigue crack growth solvers with advanced simulation tools to develop trusted 

DT assessment capabilities needed for unique geometries not treatable by standard solutions. 

• Provide methods to treat multi-site damage through frameworks that enable n-DOF crack 

growth engines, compounding, and multiple-crack interaction/linking. 

 

While considerable evolutionary improvements to corner crack solutions have been made over the years, 

the problem of a corner crack at a hole in a plate remains as an opportunity for additional research to 

address and advance applications for the more complicated issues outlined above. Advances in these 

areas promise to reduce conservatism without sacrificing safety, to expand the range of scenarios 

routinely treated in DT assessments, and to reduce the uncertainty inherent in approximate solutions. To 

this end, we will continue to advance state-of-the-art SIF solutions and to deploy them in NASGRO in 

support of practical DT assessments. 
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