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Abstract: Recent connectivity and digitization of aviation maintenance equipment has 
increased the potential of developing an Internet of Things 4.0 approach to enhance aircraft 
availability.  Typically, these systems generate more data which nucleates interest in using 
analytical methods, such as enhanced data analytics (EDA), to increase the effectiveness 
of current aviation maintenance practices.  It is important to recall that EDA methods are 
based on statistical regression and classification techniques.  However, before such 
algorithms can be applied, considerations must be given to the quantity and quality 
(precision, accuracy, and noise) of the data to enable EDA.  Several case studies are 
presented that explore these questions and indicate a careful assessment of the data is 
required to understand the accuracy and the distribution of the results from such analysis.  
The potential for the use of EDA is explored further using nondestructive evaluation (NDE) 
data.  A significant challenge for these analytical methods is the limited amount of data 
captured for the features of interest, such as fatigue cracks and corrosion. Recall that trends 
in fleets lead to replacement or modification initiatives before an extensive number of flaws 
are present.  To mitigate this limitation, the Air Force Research Laboratory (AFRL) and 
collaborators have explored and implemented alternative methods to assist in the analysis 
of NDE data that integrates at least two of the following: heuristics, model-based, and data-
derived analysis techniques.  These algorithms are called Assisted Defect Analysis (ADA).  
In addition, success has occurred when retaining the expertise of inspectors, i.e. humans-
in-the-loop, to ensure the quality of the decision-making process.  AFRL calls this approach 
Intelligence Augmentation (IA).  The USAF has a rich history of using IA to analyze large 
NDE data sets, typically acquired from inspections that use automated scanning to acquire 
data.  Several representative examples that include at least two of the three analysis 
methods are discussed, including the implementation process.  These examples illustrate 
the benefit of integrating all resources to enable accelerated decisions with data limitations 
and the value of retaining humans-in-the-loop.  Future opportunities include improved 
integration of models, especially as a function of their maturity through validation. 
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INTRODUCTION 
 
There is a growing increase in interest and attention in EDA which are statistical methods for data 
analysis to self-extract attributes in the data, such as relationships and/or trends in in data that are not 
easily seen through typical human observation.  With the potential to secure more Nondestructive 
Testing (NDT) data through the transformation to fully digital instruments connected in as envisioned 
by the Internet of Things (IoT) 4.0, there is an increased interest to use EDA methods as the diagnostic 
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tool to determine if a flaw is present in NDT data.  Justification for the use of EDA includes improved 
accuracy, improved reliability, and faster disposition time by decreasing or eliminating dependence on 
human interpretation and analysis of NDT data.  The initial focus for the use of EDA addresses the 
detection of flaws although there is exploration in the use of EDA to provide additional information on 
characterizing the size and location of flaws.  
 
When considering the applicability of EDA for flaw detection, it is important to recall that these 
technical approaches are based on statistical methods, namely regression or classification of data.  The 
concept includes the use of multiple statistical methods in parallel combined with multiple layers of 
analysis to extract statistical trends in the data to enable decisions that are not readily detectable through 
more classical methods.  This multi-dimensional data analysis methods frequently are called neural 
networks.  These approaches can either be “supervised” using data with known ground truths for 
training, or be unsupervised and allowed to form the statistical relationships without training data.  As 
these methods rely on data, critical attributes of the data must be considered for their use.  This includes 
the amount of available data, the accuracy of the data, and noise present in the data. 
 

CONSIDERATIONS WHEN USING EDA FOR ENGINEERING DECISIONS 
 
The detection of flaws using NDT capabilities is an engineering decision that requires a statistical metric 
of capability to ensure safety of systems.  In damage tolerance methods of integrity management [1], 
the capability is frequently validated by a probability of detection (POD) study that follows the guidance 
provide in MIL HDBK 1823 A [2].  To make these types of assessments possible, it is necessary to have 
metrics on the data that include such factors as quantity, quality, and fidelity, which includes such 
relatively simple factors as signal-to-noise (SNR) ratios.  The outcome of a POD study that follows the 
guidelines of MIL HDBK 1823A will have appropriate statistical metrics to enable their use of these 
values in risk calculation that ensure the safety of systems.  In the DAF, this is part of the Aircraft 
Structural Integrity Program (ASIP) [1] and the Propulsion Systems Integrity Program (PSIP) [3]. 
 
Aligned to POD studies, data metrics affect the use of EDA.  These factors become increasingly more 
critical as a function of the risk to a system if a flaw is not detected.  Therefore, detailed understanding 
of the data being used is important to enable proper use of the EDA algorithms.  Recent work illustrated 
the impact of data quantity and SNR on the ability of a supervised neural network-based diagnostic [4].  
The study used a synthetic data set and introduced Gaussian noise at different percent levels at different 
number of data points used to train the EDA algorithm. The neural network used for this study was a 
multi-layered perceptron with four layers and 50 layers in each hidden layer.   
 
The results of this evaluation are show in Figure 1.  The plot illustrates the log of the mean square error 
of the neural network as a function of SNR for differing number of data points in each data set.  The 
SNR varies from an infinite value to one that is very poor of only 10 to 1.  The number of data points in 
each data set varies from 50 up to 14,000.  The outcomes are presented in standard box plots with the 
outliers indicated by red indices for each set of numbered data points.   
 
It is clear from this data set is that the improved SNR and larger data sets results in a lower value for the 
mean squared error.  This outcome is intuitively anticipated as it is expected that more data with higher 
fidelity will result in improved outcomes.  However, this example highlights some of the challenges of 
using EDA for NDT data analysis.  Even with the highest level of SNR, the smaller data sets have 
outliers that are considerably deviant for the mean values.  When considering the impact of safety of 
systems, these outliers are the equivalent of a large, missed flaw that could impact the safety of a system.  
It is important to recall that it is not the smallest flaw that can be detected, but the largest flaw that could 
be missed that impacts the safety of a system.  This is especially true in aviation where single load path 
structures are expected to have an extraordinarily low risk of failure [1]. 
 



Aviation-based Nondestructive Evaluation Data Analytics 

The 31st symposium of ICAF – the International Committee on Aeronautical Fatigue and Structural Integrity 

3 

 
Figure 1. Multi-layer perceptron results illustrating mean square error as a function of data quantity and SNR 

 
This data sensitivity study demonstrates two critical issues that need to be considered when applying 
EDA algorithms to NDT data.  The first is the number of data points required to enable improved 
performance of EDA methods.  Large training sets of actual flaws are hard to generate due to the time 
and cost of preparing such samples.  A common complaint of POD studies that follow the guidance of 
MIL HDBK 1823A is the cost to prepare samples with characterized flaws.  For a vs a-hat assessments 
this is 40 flaws and for hit-miss assessments it is 60 flaws.  Large data sets of flaw responses in NDT 
data are difficult to find and/or generate as the engineering response to the detection of a growing 
number of flaws is either to modify or replace the structural element of concern before a large population 
of flaws is present.  An option that has been pursued includes the use of simulation to generate the 
required data sets for training.  However, a challenge is to make these simulations representative of the 
flaws found in actual structures.  This approach requires a validation process that would require a similar 
sized data set of empirical data to fully validate the simulation from an engineering perspective. 
 
The second issue is the ability to address outliers and nuances in data that can be indicators of flaws.  
The concern is the tendency of statistical methods to ignore such features when using large data sets.  
Unless the attributes of the outlier and nuance change in data is included in sufficient large quantities in 
training, the approach would tend to dismiss such features in the data which could result in missed flaws.  
Conversely, if the EDA is sensitive to outliers, then the concern becomes that large number of false calls 
that could decrease the value of implementing the EDA algorithm. 
 
Thus, the lessons learned from the analysis of representative data include the need to have the right data 
for training, including multiple flaws that are independent from each other.  It is extremely important to 
recall that resampling the same data is not acceptable unless proper statistical methods to address 
correlated data are included in the analysis.  Similarly, it is not acceptable to test EDA methods using 
the same data that was used for training.  Another aspect is to ensure factors, such as SNR, that can 
affect the statistical analysis of data are included in the training data sets.  In addition, if simulation data 
is used in training, it must be from validated models that capture all the anticipated variances found in 
the NDT data for the anticipated inspection.  Lastly, the desired precision and accuracy of the diagnostics 
to be performed by the EDA must be defined to ensure the amount of available data is sufficient to meet 
these objectives.  This last consideration is especially true for unsupervised methods. 
 

CHALLENGES FOR EDA FOR NDT 
 
As indicted by the sensitivity studies in the previous section, a significant challenge for the use of EDA 
in NDT data is to capture the effect of all the factors that can influence the capability to detect the flaws 
of interest.  Figure 2 is a representation of these factors that the author has used extensively to illustrate 
the additional challenges when migrating from a laboratory to an operational environment.  The three 
general classes of challenges can be summarized as equipment variability, structural complexity and 
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variability, plus flaw complexity and variability.  In addition, these parameters can change as a function 
of the life of a system which increases the capability validation difficulty of the NDT system when 
integrated into system life management. 
 

 
Figure 2. Representative increase in challenges when migrating from a laboratory environment (left) to 

an operational environment (right) 
 
Equipment variability is the easiest of the three sources of variability to address from a research and 
development perspective.  The variability in equipment settings can be defined and managed, but the 
unknown that frequently needs to be quantified is sensor variability and its impact on the diagnostics of 
flaws.  Common NDT procedures address this with calibration processes which alleviate many of these 
concerns.  However, small changes in sensor configuration, such as coil tilt within eddy current sensors 
or slight depolarization of well used ultrasonic transducers, can have an effect if the flaw detection 
response is used in training or testing.  Experience has shown this can have an effect, but it is the lowest 
impact factor of the three items. 
 
Flaw to flaw variability can have a much greater impact on the NDT response.  Previous studies have 
illustrated that the same size flaw can vary the amplitude response from an eddy current response by 
over 20 percent of a full screen height reading [5].  Similar results can occur in ultrasonic testing as well 
as other NDT techniques.  For ultrasound, fatigue crack morphology and tortuosity can affect a response.  
Local stress considerations from a fit-up of assemblies and changes due to use can vary crack closure 
which, in turn, affects the magnitude of the ultrasonic signal.  The variability can be addressed in 
simulation provide all the attributes of the flaw that affect detection are included in the simulation 
studies.  This includes their interaction, which can become a very large study, especially when 
considering engineering level validation of the simulation. 
 
While flaw to flaw variability can be broadly categorized as a function of the type of flaw, structural 
variability can become much more challenging in the analysis of NDT data.  This is largely due to the 
extensive range of aviation structures evaluated by NDT.  In addition, other considerations include the 
materials being used, including metals, polymers, and composites, the manufacturing process being 
used, which are too many to list and can include automation, partial automation, or hand assembly, plus 
the assembly process used to joint components, such as fastening and bonding.   
 
A significant challenge is how to evaluate how all these parameters can affect the NDT response, both 
individually and in multiple combinations.  Consider the simple fastened joint between two metal 
surfaces.  Factors that need to be included in a sensitivity study include up to 22 variables addressing 
equipment, flaws, and structure [6].  Structural considerations include such things as composition of 
each layer, the possibility of shims and their composition, assembly quality, such as fastener hole tilt or 
skew, and fit-up stresses as a function of what type of fastener is used and how it is installed.  In addition, 
how these factors change as a function of time due to maintenance, repairs, modifications, and even use 
need to be included.   
 
Using EDA techniques for these applications can become very daunting when considering all the 
parameters that need to be addressed to make diagnostic decisions using automated processes.  This 
includes how the statistical processes adjust to account for changes that occur as a function of time.  In 
addition, how these affect the diagnostic capability of the NDT data must be validated to enable their 
use in system risk and life management.  Therefore, the proper capturing of these factors in statistically 
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representative methods presents itself as a significant challenge, but also a significant research and 
development opportunity. 
 

DAF APPROACH TO ASSISTED ANALYSIS OF NDT DATA 
 
The Air Force Research Laboratory (AFRL) has been leading the development of algorithms to assist 
in the diagnostics of NDT data, including one of the first implementation for an aviation application [7].  
Attributes that have made this approach successful include the use of multiple approaches to develop 
algorithms for the diagnostic capability combined with the approach that the algorithms will not replace 
all human interpretation of NDT data.  The algorithms are used as a capability to facilitate and guide the 
interpretation to make the workload on an inspector easier and focused on the critical elements of the 
diagnostic process that do not easily rend themselves for automation.  AFRL has called this approach 
Intelligence Augmentation (IA), but an alternative term being sued in the scientific community is 
Collaborative Intelligence (CI) [8].  This reflects how software tools and capabilities can be used to 
assist in the analysis of NDT data, which AFRL has named Assisted Defect Analysis (ADA). 
 
ADA algorithms combine multiple approaches to provide the optimized method to facilitate NDT 
diagnostics.  These can be placed into three general categories.  The first uses heuristic-based methods 
that incorporate “rules of the road” that closely mimic the methods by which inspectors interpret data.  
The second is a model-based algorithms that use simulation to capture the impact of variability and can 
compensate for this variability in the diagnostics.  The third uses EDA methods to tease out as a much 
diagnostics information as possible from data sets that are frequently much smaller than what would be 
required for robust EDA analysis.   
 
Successful application of ADA has frequently included at least two of these approaches into an 
integrated diagnostic algorithm for the specific NDT application being addressed.  This include the use 
of test data to ensure the intent of the application is being met and that the available data meets the needs 
of the application before a comprehensive validation study is accomplished.  The output of the ADA 
diagnostic is not the final disposition of an indication.  Depending on the application, the output can be 
used to screen data that has no criteria to contain a defect to enable inspectors to focus their attention to 
suspect portions of the inspection data.  Alternatively, the output can be used to provide guidance on the 
nature of an indication so the proper disposition process can be rapidly identified and implemented, 
minimizing the time a system is in the inspection stage of a maintenance process.  The key attribute of 
this approach is the human inspector is kept in the loop.  The human functions to ensure data quality, 
data fidelity, and can review any ADA outputs to make the final determination regarding an indication. 
 

REPRESENTATIVE DAF SUCCESSES 
 
The following represents several examples developed by AFRL and transitioned to the DAF.  The ADA 
capabilities are presented as a function of increasing complexity from the perspective of combining the 
three technical approaches outlined in the previous section.  However, this order should not be 
considered a listing of increasing complexity as each application had its unique degrees of complexity 
and used different approaches tailored to the desired outcome. 
 
A representative application that emphasizes the use of heuristics occurs in the manufacturing of 
aerospace composite structures, especially primary load carrying structures such as wing and fuselage 
skins.  These parts require 100 percent ultrasonic inspection to detect delaminations and porosity where 
common rejection criteria are for delaminations greater than 0.25 inches in diameter or porosity that 
exceeds 2 percent.  When considering the large areas to be inspected at manufacturing (note: this is not 
a requirement once a system is fielded), a bottleneck in the production flow can occur with the large 
volume of data to be assessed by inspectors.  To minimize this bottleneck, a heuristic-based algorithm 
was developed to closely mimic the steps taken by an inspector to review data collected from these 
inspections [9].   
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The ADA algorithm leverages the available A-scan and B-scan data that accompanies the C-scan data.  
Multiple steps are taken in each of the three data representations to determine if an indication has features 
associated with delaminations that exceed the reject criteria.  The representative result is shown in Figure 
3 where C-scan features are identified as suspected defects and others are identified as benign.  Though 
both may appear similar in the C-scan, attributes of the front wall, back wall, and volumetric gating can 
be used to distinguish between acceptable and rejectable features.  The rejectable features are 
highlighted to the trained inspector who makes the final determination regarding the indication.  With 
this approach, inspection processes have been greatly accelerated, though exact metrics are not available 
for publication. 

 
Figure 3. Ultrasonic c-scan of a composite test article indicating regions identified by the ADA 

algorithms as potential flaws 
 
Another representative case study includes the use of both simulation and heuristics to identified flaws 
and discriminate between types of flaws.  The specific application is for rotating turbine engine 
components evaluated by an automated inspection system that can provide highly registered data.  Using 
a combination of model-based assessments and heuristic analysis methods, the response from data with 
varying probe conditions can be evaluated and provide guidance on what features are from suspected 
indications and what are due to the probe variability [10].  A representative illustration of the 
experimental and model data being compared in impedance planes is show in Figure 4 and highlights 
the impact of small probe variations on the attributes of the impedance plane not due to a flaw.  
Additional steps in the develop process resulted in the ADA algorithms providing guidance to the 
inspectors when features in the data indicated non-metallic inclusions were present as opposed to fatigue 
cracks in the components being assessed.  The ADA being developed for this application is in its final 
stages of refinement before it will be evaluated by a formal validation process. 
 
The third example combines elements of heuristics, simulations, and large data set analysis to realize a 
successful outcome on a very complex inspection.  The application addresses the lower forward spar 
cap on C-130 aircraft [7] as shown in Figure 5.  The approach leverages development at the academic 
level for both the generation and detection of ultrasonic creeping waves [11], plus the use of 
algorithms to discern the presence of cracks in a less complex, but still challenging, application [12].  
As described in [7], the solution included the use of analytical methods to fully represent the 
propagation paths within the structure, simulation tools to explore various attributes of the inspection 
data as it propagates in the structure, plus the use of advanced processing methods, namely echo 
dynamics and local correlation functions, to discriminate between responses from potential flaws to 
those from other geometric reflectors found intermittently in the structure.  In addition, over 2000 
representative inspection opportunities from both harvested and mock-up test articles were used to 
refine the decision-making process for the ADA algorithms.   
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Figure 4.  Simulation and experimental data from representations of eddy current scans indication 

differences due to probe variability. 
 
 

 
Figure 5.  Lower forward spar cap of the C-130 illustrating complexity of the regions to be inspected. 

 
The inspection process was fully validated by a comprehensive POD study before being deployed.  The 
inspections were accomplished by contractor field teams that would collect the data and ensure it had 
sufficient quality to be evaluated by the ADA.  Suspected indications identified by the ADA was sent 
to an NDT engineer to make a final determination if the indication was confirmed and needed to be sent 
to engineering for disposition. 
 
The next generation of ADA will expand the capability of algorithms to facilitate the identification of 
flaws to the capability to characterize the flaws in ways tat are not possible today.  While inspectors can 
use methods to approximate flaw size, attributes like fatigue crack depth are especially challenging.  
However, using a combination of heuristics, simulations, and data-driven analytical methods, the use of 
ADA to determine the depth of a fatigue crack from a bolt hole eddy current inspection was shown to 
have an accuracy of 8.5 percent for fastener holes with minimal variability [13].  The nest steps in the 
development process use this integrated approach to address fastener hole variability, such as skew and 
out-of-round attributes, and provide a crack depth with a statistical measure of accuracy to enable rapid 
disposition of these flaws in aerospace structures. 
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SUMMARY 
 
There is a continued potential for EDA methods to enhance data analysis and diagnostics for NDT data.  
However, there needs to be a realistic approach that includes evaluation of the data quantity, quality, 
and fidelity.  This ensures it has the desired attributes that enable the EDA techniques to provide 
outcomes with sufficient statistical metrics for the results to be used in engineering decisions.  This is 
especially significant for applications where NDT is used to ensure safety of critical systems.  A 
representative example illustrates the challenges in using EDA techniques for smaller and noisy data 
sets.  The outcome of the results, as quantified by the mean square error, has a broader range in value 
and can have outliers that would imply potentially missed flaws if this approach was used for NDT data 
sets.  The data for flaws can be augmented by simulated results, but these must contain all the anticipated 
variability and complexity of the NDT evaluation technique. 
 
Representative variability includes attributes of the evaluation equipment, the flaws, and the structure 
being assessed, especially when it has been maintained, repaired, modified, or even changed due to use 
as is common for aging aviation assets.  Variability in NDT equipment can be frequently addressed by 
calibration and other processes.  However, it is important to note that nuances in the data that could be 
within calibration could make the use of EDA challenging due to the statistical nature of these methods.  
Flaw variability is another challenge due to the high degree of differences in flaws.  As an example, no 
two fatigue cracks have the exact same morphology or tortuosity.  This causes variability in the response 
even from flaws with the same overall size.  Structural variability increases as the use or age of the 
system increases.  Representative examples, such as local fit up stresses from fastened assemblies, 
indicate how local changes can affect the NDT interrogation method and lead to variability of an EDA 
diagnostic even if the flaw remains the same. 
 
To address these challenges, AFRL is pursuing hybrid approaches that integrate heuristic, model-based, 
and data-driven diagnostic algorithms to facilitate and reduce the workload of inspectors while not 
taking them completely out of the loop.  Representative examples for several DAF related applications 
have demonstrated the power of combining at least two of these methods to enable complex inspections 
and diagnostics of NDT data.  The ADA algorithms are combined with human analysis to maximize the 
value of the algorithms by reducing the workload of inspectors so they can focus on the critical data that 
could be indications of flaws being present.  Future work includes plans to expand the capabilities of 
ADA algorithms to characterized flaws with statistical metrics of accuracy.  Initial development efforts 
have shown the potential of this capability, which would decrease the disposition time of indications 
and increase availability of the system to the end-user. 
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