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Abstract: The design of aviation products made from composite materials relies on 

allowed strength levels that account for damage tolerance; these levels are commonly 

based on open hole specimens. However, if the design introduces an edge distance that 

is shorter than the specimen used to determine the strength levels, a finite width 

correction factor must be applied to the allowed strength. This correction factor depends 

on the edge distance and the composite material layup. A machine learning-based 

methodology is proposed in this study to obtain the finite width correction factor for any 

given set of layup and geometrical properties. This approach can efficiently provide 

accurate predictions of the correction factor with a relatively small amount of test or 

simulation data. Three different machine learning algorithms were used in the study, all 

provided similar predicted regressions for the entire domain studied.  
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INTRODUCTION 
 

Composite materials have become increasingly popular in the aviation industry over the last two 

decades, with both civil and military aviation products utilizing them. The Boeing 787 and Airbus A-

350, for example, consist of approximately 50% composite material in their wetted areas, and unmanned 

air vehicles primarily use composite structures for their airframes. The design of primary structures 

made from composites is governed by damage tolerance allowables, as required by relevant regulations 

for both military and civil products. 

 

Determining damage tolerance allowables is typically done using the Open Hole Compression (OHC) 

test protocol, an industry practice that is guided by an ASTM standard [1], in which the ratio between 

the specimen width and the hole diameter is 6.0. However, the design of structural parts may limit the 

edge distance of fastener holes, leading to ratios of specimen width W to the open hole diameter D that 

are less than W/D = 6.0. In such cases, a finite width correction factor must be applied to adjust the 

strength allowables determined by the OHC tests. 

 

There are numerous studies published in the literature that used either analytical or numerical methods 

to determine the finite width effect on the stress concentration in the plate [2-12]. Although analytical 

models can generally cover the entire range of layups and W/D ratios, their assumptions may lead to 

overly conservative results compared to experimental data [8]. On the other hand, numerical simulations 

can provide accurate results at specific layups and W/D ratios but require additional experimental data 
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to cover the entire range. In this study, a new approach is proposed to determine the finite width 

correction factors for composite panels using machine learning techniques. By using machine learning 

algorithms such as Gaussian Process Regression (GPR), Neural Network (NN), and Random Forest 

(RF), an accurate and efficient regression of the entire problem domain can be achieved with only a few 

experimental data points. The accuracy of the GPR model is evaluated using standard deviation plots, 

and additional training data can be added to minimize the regression errors. 

 

MACHINE LEARNING 
 

Over the past few years, several studies of how to integrate airframe design and substantiation with 

Machine Learning (ML) concepts were published. One of the key benefits of using ML approaches is 

their ability to efficiently perform regressions based on test data and simulations, which can handle large 

datasets. For instance, Zobeiry et al. [13] employed ML algorithms to predict the fracture toughness of 

composite laminates, while Reiner et al. [14] used ML to forecast compressive damages. In addition, 

ML is a particularly attractive approach for handling large datasets, as shown in Ref. [15-17], which 

focused on damage detection. ML has been applied to other areas of composite materials research, such 

as determining required shims and gaps during assembly [18], simulating the curing process of 

composite structures [19], detecting defects during automated fiber placement [20], and predicting 

stiffness and strength [21-23]. Recent studies have also proposed a methodology for calibrating failure 

parameters of the Virtual Crack Closure Technique [24] and the Cohesive Zone Model [25] using the 

Gaussian Process Regression (GPR) machine learning method. Both studies focused on failure 

predictions of bonded composites and showed excellent agreement between the predictions and test 

results. 

 

Three machine learning algorithms are used in this study. The Gaussian Process Regression (GPR) is a 

probabilistic machine learning technique that assumes Bayesian regression within the studied domain. 

It predicts the mean and standard deviation values of the regression function assuming a Gaussian 

distribution. The GPR training process involves kernel matrix selection that describes the covariance 

function between data points in the entire domain. The Radial Basis Function (RBF) was selected here 

as the kernel. The WhiteKernel algorithm is also employed, and machine learning predictions are 

obtained using a combined kernel. The Multi-Layer Perceptron (MLP) approach uses artificial neurons 

as computational units with weighted input signals. They produce an output signal using an activation 

function, and the weight functions produced construct the output using summation. The MLP learning 

procedure involves propagation of the input data forward to the output layer, where the difference 

between the predicted and known outcome is minimized by a back-propagating process. Finally, 

Random Forest (RF) is a machine learning method based on simple random decision trees that can be 

used for both classification and regression. The RF algorithm constructs the outcome of these decision 

trees and outputs the average of all individual predictions. The RF method involves randomly picking 

data points from the training set and constructing decision trees based on the chosen data points.  

 

PROBLEM DESCRIPTION AND METHODOLOGY 
 

Open-hole specimens as per Ref. [1] are analysed with different ratios of W/D. An example of the 

specimen dimensions with W/D = 6.0 is presented in Figure 1. For design cases with W/D < 6, a finite 

width correction factor should be applied to the strength allowables. This factor is dependent on the 

layup and W/D ratio, and can be obtained using the following methodology:  

 

 

Step 1: Machine Learning (ML) training dataset that is based on test data, simulations, or a combination 

of both is obtained. In this study, training points were obtained using finite element simulations.  

 

Step 2: Using classical laminate theory, the effective axial stiffness is determined for the specific layups 

of the training points. As a result, the investigated domain is then reduced to three dimensions, including 

the finite width ratio W/D, effective axial stiffness, and finite width correction factor.  
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Step 3: The ML algorithm is trained, and a regression surface is produced among the entire layup and 

W/D domain.  

 

Step 4: The predicted regression surfaces are validated with respect to test data.  

 

Step 5: Finite width correction factor are determined for any given set of layup and W/D ratio.  

 

 

 
 

Figure 1: Open hole test specimen dimensions (W/D = 6.0) 

 

The abovementioned procedure is only meant to derive finite width correction factors and not to predict 

failures. Different failure mechanisms govern different layups, so the finite width correction factors 

should be applied to OH strength allowables relevant to the studied layup. If OH strength allowables are 

not available, macroscopic or micromechanical failure criteria can be used to adjust the strength 

allowables with respect to the layup studied.  

 

FINITE WIDTH CORRECTION FACTORS 
 

As a first stage, training data was obtained using analysis combined with test data. Mechanical properties 

of Hexcel IM7/8552 [26] were used for the finite element model. The GPR machine learning algorithm 

was used to perform regression over the investigated domain and determine the uncertainty of the 

regression in terms of the standard deviation. The uncertainty was minimized by adding additional finite 

element analyses in combinations of effective stiffness and W/D ratios in which the produced standard 

deviation was relatively large.  

 

Next, regression surfaces were produced with respect to the effective stiffness Ex and the ratio W/D. 

Example of such surfaces is presented in Figure 2. In this figure, the training data is marked as black 

dots. All algorithms generally well fit the training data, as can be seen by the R2 values shown in this 

figure. The fitting can be improved by adding more training data. The sensitivity of the predicted finite 

width correction factor is demonstrated in Figure 3. It can be concluded that the GPR and RF 

convergence with relatively small number of training points as compared to the neural network (MLP).   
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Figure 2: Regression surfaces to obtain finite width correction factors using the GPR (left), MLP 

(middle) and RF (right) algorithms 

 

 

 
Figure 3: Sensitivity of the predicted finite width correction factors with respect to the number of 

training points (W/D = 3.1, [02, 90, ±452]s 

 

 

The three machine learning algorithms were validated by comparing their regression surfaces with 

relevant test data of IM7/8552 laminates [28]. All methods demonstrated excellent agreement with test 

data, with up to 4% error.  

 

 
Figure 4: Predictions vs. Test data 
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SUMMARY AND CONCLUSIONS 
 

This paper proposes an approach for determining finite width correction factors for OHC strength using 

machine learning regressions. The proposed methodology requires only a few training data points and 

can be based on tests, simulations, or both. The study demonstrates the methodology's effectiveness for 

a wide range of layups and W/D ratios of IM7/8552 composite material. 

 

The methodology includes a process to assess the accuracy of predicted regression surfaces and identify 

additional characteristics of training points. The paper employs three machine learning algorithms, 

which produce similar predicted regression surfaces for various layups and W/D ratios. These surfaces 

were verified and validated against existing test data of IM7/8552 unidirectional composites. The 

convergence of the methods is also demonstrated as a function of the number of training data points. 
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