NRC·CNRC

Bell 525 Vertical Fin / Aft Fuselage and Tailboom Composite / Metallic Hybrid Certification Fatigue Testing

C.A. Beltempo, J.Rogers [–] NRC Aerospace, P. Langlois, A.R. Colle – Bell Flight

38th Conference & 31st Symposium of the International Committee on Aeronautical Fatigue and Structural Integrity Delft, The Netherlands, 26-29 June 2023

Background Bell 525 Relentless

- Bell 525 Relentless is Bell's largest commercial helicopter to date announced in 2012
- Super medium helicopter, targeting oil and gas, corporate, SAR, public safety, troop transport markets.

Specification	B525
PAX	16-20
MTOW	9752 kg
Range	1000+ km
Speed	165 kn

Background Bell 525 Relentless

- Bell 525 Relentless is Bell's largest commercial helicopter to date announced in 2012
- Super medium helicopter, targeting oil and gas, corporate, SAR, public safety, troop transport markets.
- First introduction of fly by wire into civil rotorcraft
- First flight 2015, certification with FAA to FAR 29 soon

Specification	B525
PAX	16-20
MTOW	9752 kg
Range	1000+ km
Speed	165 kn

Background Bell 525 Fatigue Test Objectives

- Test Goals:
 - Evaluate the damage tolerance of composite Principal Structural Elements (PSE) structures with intrinsic flaws and impact damages;
 - Determine the fatigue strength of metallic PSE structures to determine a replacement time based on crack initiation time in an as-manufactured component;
 - To perform strain surveys under static load conditions to collect strain, displacements and load reactions data to validate the airframe Finite Element Model (FEM);
 - To demonstrate residual strength of the structure to the post fatigue test static requirements;
 - To provide substantiating data to show compliance to the applicable CFR Part 29 requirements
- Full Scale Tests Required:
 - Others
 - Aft Fuselage / Tailboom Fatigue Test ← Carried out by NRC
 - Aft Tailboom / Vertical Fin Fatigue Test ← Carried out by NRC

Background Bell 525 Structural Arrangement

Background Bell 525 Structural Arrangement

Background Bell 525 Structural Arrangement

Background Bell 525 Fatigue Test Articles

Aft Fuselage / Tailboom Test

Background Bell 525 Fatigue Test Objectives

Aft Tailboom / Vertical Fin

Background

Bell 525 Fatigue Test Composite Certification Approach

• Requirement:

- Demonstration of catastrophic failure due to static or fatigue loads be avoided throughout operational life or prescribed inspection intervals, while considering intrinsic or discrete manufacturing defects or accidental damage
- Threat Assessment of PSE's and Intrinsic Flaws incorporated at build, along with Impact
- Aft Fuselage / Tailboom Approach Clear Cat 1 (BVID) with Cycling add Cat 2 / 3 and Establish Inspection Interval

Background

Bell 525 Fatigue Test Composite Certification Approach

• Requirement:

- Demonstration of catastrophic failure due to static or fatigue loads be avoided throughout operational life or prescribed inspection intervals, while considering intrinsic or discrete manufacturing defects or accidental damage
- Threat Assessment of PSE's and Intrinsic Flaws incorporated at build, along with Impact
- Aft Tailboom / Vertical Fin Approach Some Cat 1's were Classified as Cat 2 and inspection interval established during cycling, Cat 3 introduced and tested for inspection interval

Background Hybrid Material Certification Challenges

- Load Spectrum
 - Composites damage tolerance with embedded flaws / impacts requires high peak loads
 - Metallic damage tolerance peak loads are clipped to avoid non-conservative notch tip-plasticity
- Environment at Empennage Hot / Wet
 - Turbine exhaust impinges directly on entire area
 - Combined with worst case ground environmental condition leads to challenging LEFs
 - Typically handled with Load Enhancement Factors (LEFs)
 - Unacceptably high LEFs required for this area – would risk non-representative damage to metallic components

Background Hybrid Material Certification Challenges

- To avoid extremely high LEFs to account for service environment
 - Run articles in hot / dry with adjustment to hot / wet with small LEF
 - Use environmental enclosures and run hot dry NRC built / designed multizone closed-loop design

TEST DETAILS

1

Test Details Aft Tailboom / Vertical Fin

20

TEST CHALLENGES

Commissioning

- Temperature soak times prior to loading defined in Test Plan, operationally verified via internal thermocouples
- Heated chamber controller tuning to generate even temperature distribution (within a tolerance band of ±5.5 °C)
- Load evaluations conducted at room temperature followed by high-temperature
- Instrumentation Temperature Compensation Plan
 - Pre-calibrated and verified bending / shear bridges should have been selftemperature compensating
 - Quarter bridge strain gauges to be corrected post-test ("Golden Zero")

- Instrumentation Temperature
 Compensation Findings
 - Quarter bridge strain gauge zerog readings changed under temperature, as expected
 - Bending bridge readings changed under temperature, this was unexpected

Instrumentation Temperature Compensation Findings

- Quarter bridge strain gauge zerog readings changed under temperature, as expected
- Bending bridge readings changed under temperature, this was unexpected
- Change in bridge reading retained under return to ambient loading
- Stabilization achieved after multiple, longer temperature soak cycles
- Test schedule precluded disassembly and bridge recalibration, therefore, these were also compensated in-situ ("Golden Zero")

- Vertical Fin Cradle Movement
 - Vertical fin loaded via compression – compression cradle with elastomeric interface to skin
 - Compression friction fit needed
 - Cradle attachment torques validated during room temperature

• Vertical Fin Cradle Movement

- Vertical fin loaded via compression – compression cradle with elastomeric interface to skin
- Compression friction fit needed
- Cradle attachment torques validated during room temperature
- Following thermal cycling, cradle position noted to have moved
- Resolved by changing elastomer to lower CTE and increasing attachment torques to increase compression
- Result was that cradle now moved excessively at room temperature – acceptable trade

20

THANK YOU

C. Andre Beltempo

Andre.Beltempo@nrc-cnrc.gc.ca

National Research Conseil national de Council Canada recherches Canada