

Can we predict fatigue crack growth without the help of Paris?

René Alderliesten / 29 June 2023

Philosophical Introduction

ŤUDelft

No.	Floor	Initial velocity	Time [s]
1	12	None	2.71
2	12	Moderate	2.44
3	12	High	2.02

Philosophical Introduction

Philosophical Introduction

ŤUDelft

Experimentalists...

Physicists...

$$duration = t = 0.34 \left(\frac{distance^{1.1}}{\sqrt{initial \ velocity}}\right)^{0.6}$$

$$duration = \frac{1}{g} \left[\sqrt{v_0^2 + 2g \cdot distance} - v_0\right]$$

$$distance$$

$$velocity(t) = v_0 + g t$$

$$distance(t) = v_0 t + \frac{1}{2} g t^2$$

*T***U**Delft

Problem statement

I need to test multiple cases before I can predict...

Hence: I need data first, before I predict that data.

 Equivalent to AI / Neural Network concepts that need data before predictions can be made?

Interpolate ergo sum

Can I predict without prior fatigue crack growth data?

Fundamental physics

At any point in time, there is energy conservation

$$\dot{W} = \dot{U}_a + \dot{U}_p + \dot{U}_e$$

where \dot{U} denotes derivative, i.e. $\frac{dU}{dt}$

Or through integration over entire load cycle using the applied frequency $f = \frac{N}{\Delta t}$ in discrete form $\frac{dU}{dN}$

TUDelf

Fundamental physics

Discrete energy balance

 $\frac{dW}{dN} = \frac{dU}{dA}\frac{dA}{dN}$

describes physics, does not constitute prediction

Physics: describes the process

Engineering prediction: how many times can I repeat that process?

Let's try to predict

Methodology for load application

Fatigue loading implies application of Work

$$U_0 = \frac{1}{2}S\varepsilon WLt = \frac{S^2}{2E}WLt$$

In case of cyclic loading:

TUDelft

Methodology

Plate containing crack with length 2a

- Compliance increases with a
- Stiffness decrease under constant load implies work increase

$$\beta = F(a) = \frac{U_a}{U_0} = \sqrt{\sec\left(\frac{\pi a}{W}\right)}$$

TUDelft

Methodology for load application

Fatigue loading implies application of Work

$$U_0 = \frac{1}{2}S\varepsilon WLt = \frac{S^2}{2E}WLt$$

In case of cyclic loading:

$$U_{cyc} = \frac{S_{max}^2 - S_{min}^2}{2E} WLt$$

In case of finite width:

Delft

$$U_{cyc,a} = \frac{S_{max}^2 - S_{min}^2}{2E} WLt \sqrt{sec\left(\frac{\pi a}{W}\right)}$$

Note

The energy balance

 $\frac{dW}{dN} = \frac{dU}{dA}\frac{dA}{dN}$

Does not relate dW to W

Let's look at the energy balance first

 $\frac{V d V \not\models}{dN} \stackrel{\dot{U}}{=} \frac{d \#_a \dot{U}_a d \#_a \dot{U}_a d \#_a \dot{U}_a d H}{da dN} + \frac{\dot{U}_a U_p}{dV_p} \frac{dV_p}{dN}$

Fracture surface formation

Fracture surface energy dissipation

ŤUDelft

Plasticity (volume)

Irwin's plastic zone approximation for plastic volume

$$r_{p} = \frac{1}{\alpha \pi} \left(\frac{K_{max}}{S_{yield}} \right)^{2}$$

with α =1 for plane stress, α =2 for plane strain

Plastic volume (cylinder in thickness direction)

$$V_p = \pi r_p^2 t = \frac{\pi}{\alpha^2} a^2 \sec^2\left(\frac{\pi a}{W}\right) \left(\frac{S_{max}}{S_{yield}}\right)^4 \qquad \Rightarrow V_p = f(a) \quad \Rightarrow \frac{dV_p}{dN} = f\left(\frac{da}{dN}\right)$$

grows as crescent volume due to crack tip translation da and increase in radius r_p

Plasticity (energy density)

Plastic energy dissipation

Solve energy balance on tests with dU_p/dV_p as the only unknown

Test	Material	W	t	a ₀	S _{max}	R	S _{vield}	Ref
		[mm]	[mm]	[mm]	[MPa]		[MPa]	
1	2024-T3	160	6.1	13.18	60	0	324	[7]
2	2024-T3	160	6.1	11.25	80	0.3	324	[7]
3	7075-T6	160	3.2	6.35	48.8	0.1	503	[5,9]
4	Fe510Nb	100	10	10.0	113	0.5	460	[10]

ŤUDelft

Plasticity (energy density) – con'd

Mean plastic energy density through solving energy balance

Delft

Let's now relate W to dW...

Result

TUDelft

Result

ŤUDelft

Discussion

One may argue that this method assumes little influence of material microstructure

However:

- it's implicitly in the stress-strain relationship (to be further developed!)
- literature reveals that microstructure indeed may have limited influence

Conclusion

Can we predict fatigue crack growth without the help of Paris?

Yes, we can!

Thank you for your attention

René Alderliesten

