A-10 IMPLEMENTING PROGNOSTICS WITH THE DIGITAL THREAD

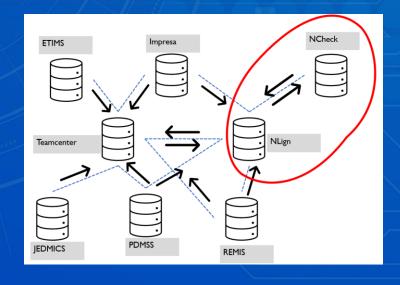
Martin Raming Southwest Research Institute | A-10 ASIP USAF AFLCMC/WAA

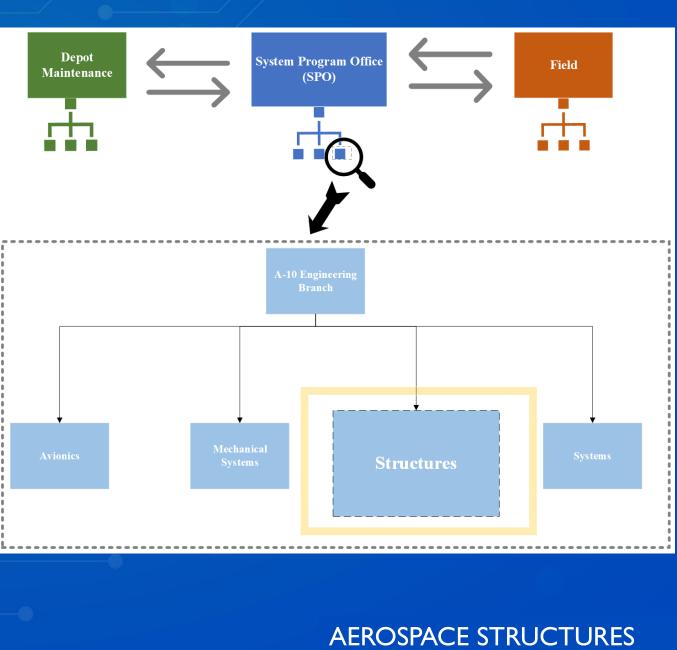
Co-Authors: Hazen Sedgwick (USAF-Hill AFB), Luciano Smith (SwRI), and Paul Clark Ph.D. (SwRI)

Approved for public release: distribution unlimited. Public release number USAFA-DF-2023-422. *The views expressed in this article, book, or presentation are those of the author and do not necessarily reflect the official policy or position of the United States Air Force Academy, the Air Force, the Department of Defense, or the U.S. Government.*

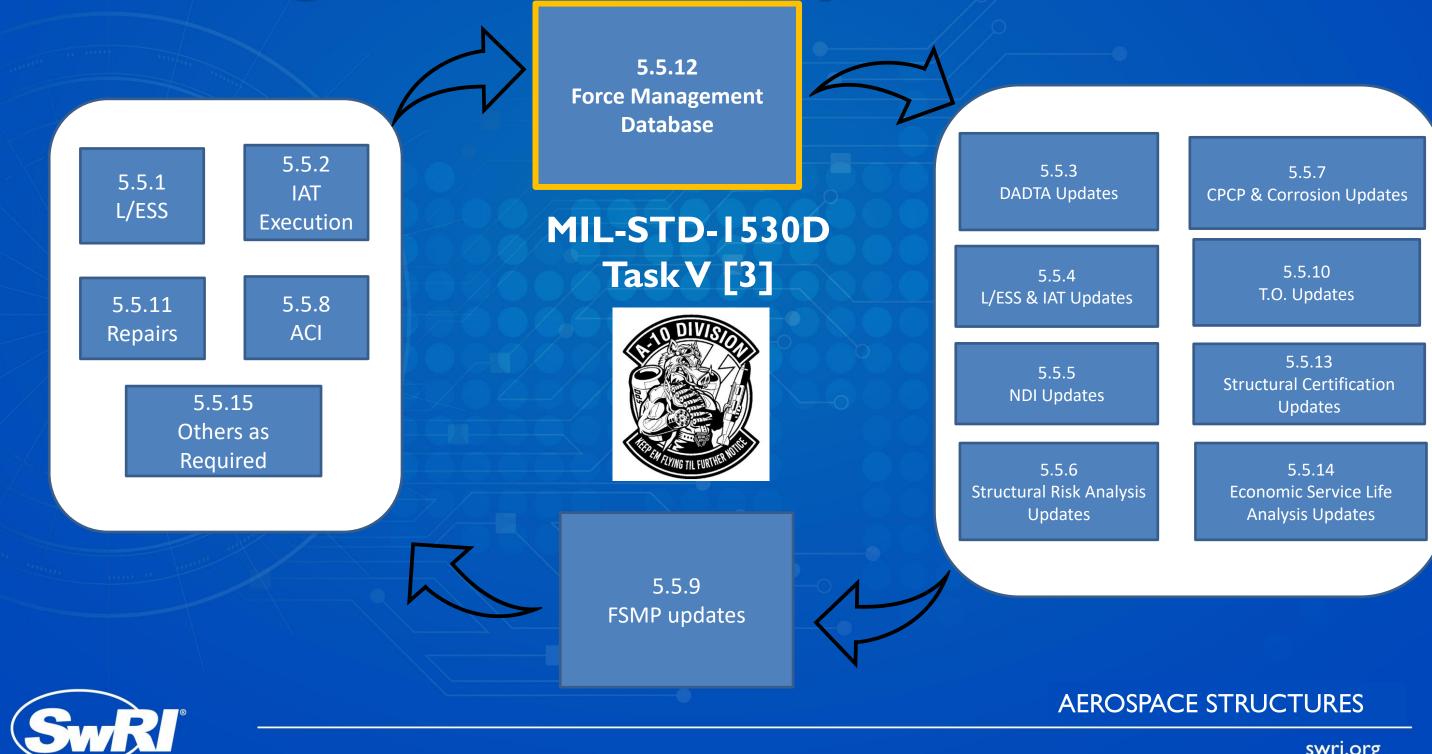
Background

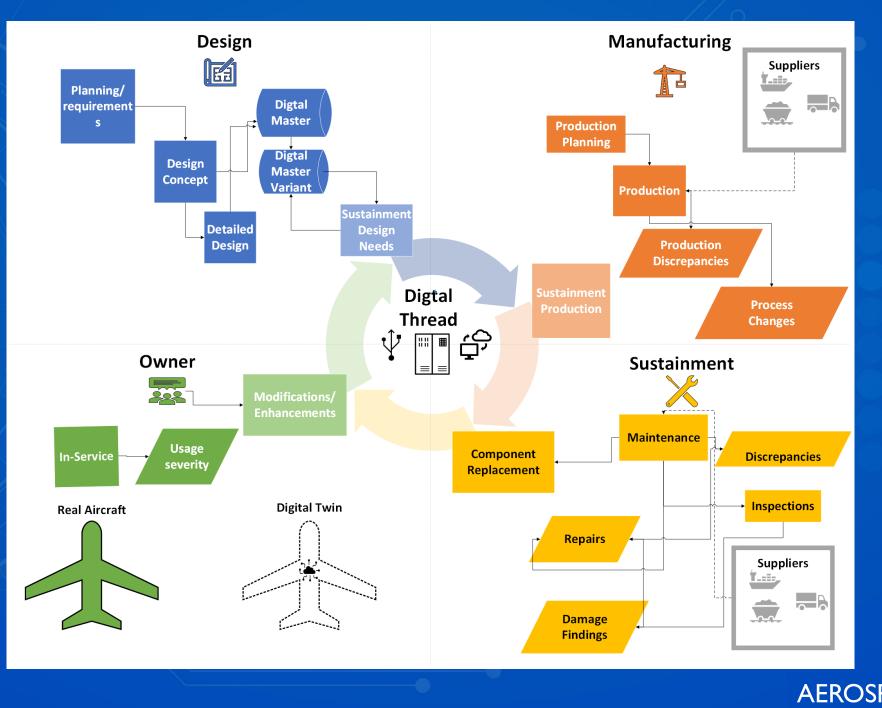
- 1973 A-10 Aircraft by Fairchild-Republic is selected to fulfill close-air support (CAS) by the United States Air force (USAF)
- 1997 A-10 fleet approaching safe service life of 6,000 hours[1]
- 2002 A USAF investigation declares A-10 ASIP "broken"
 - The path towards recovery for A-10 ASIP resulted in a cost-effective organic engineering expertise unique to the USAF [2]
- 2007 Digital transformation for the A-10 begins with the design of an enhanced wing assembly (EWA) as part of a wing replacement program




AEROSPACE STRUCTURES

Breadth of A-10 SPO Digital Thread


- Three main departments: Depot, Field, and System Program Office (SPO)
- Multiple digital thread systems utilized
- Focus on A-10 ASIP digital thread


ASIP Digital Thread Requirements

©SOUTHWEST RESEARCH INSTITUTE

The Digital Thread Lifecycle

©SOUTHWEST RESEARCH INSTITUTE

AEROSPACE STRUCTURES

swri.org

5

Data Collection Before Digital Transformation

Paper Logbooks

- Handwritten
- Signatures and stamps
- Stored in cabinets
- Delivered periodically

AEROSPACE STRUCTURES

Data Collection Before Digital Transformation

- I. Mechanic prepares the aircraft or component for inspection
- 2. NDI notified, and an inspection performed.
- 3. Findings documented in the logbook
- 4. Mechanics perform corrective ma **Perocess**y oversizing the hole by a

nominal size

- 5. NDI reinspects repaired holes.
- 6. Steps 4 and 5 would be repeated until NDI cleared the hole or maximum oversize diameter reached

Example of fuselage inspection #2 with fabricated data

1	2	3	4	5	6	7	8	9
Hole #	NDI: Record				MX: Record	d		
	Upper Longeron Plate	Upper Longeron J-Extrusion	FS 468.50 Frame	-63 Strap	Hole Diameters (+/- 0.001 in.)			
	Holes 1 and 2 (0.183 in.) Hole 3, 4, 5 (0.250 in.)	Hole 3, 4, 5 (0.250 in.)	Holes 1 and 2 (0.460 in.)	Hole 5 (0.190 in.)	Initial	Repair (Pre-Coldwork)	AFMC Form 202 #	Comments
RH 1				~~~	0.460			
			All Clear		N/A			
					N/A			
					N/A			
8					N/A			
		r						
					N/A			
RH 2					• N/A			
-			Re	CU	N/A C	me	ents	
	70%				0.2.5	0.266		
	50%				N/A	0.2.78		
RH 3	Clear				N/A			
-					N/A			
					N/A			
RH 4								
					N/A			
					N/A			
					N/A		-	
					N/A			
RH 5		97			N/A			
					N/A			
					N/A			
					N/A		-	
					1.286.3			REV 2

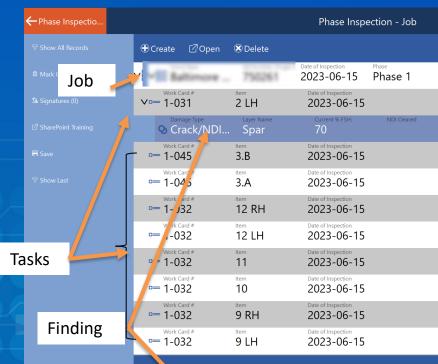
AEROSPACE STRUCTURES

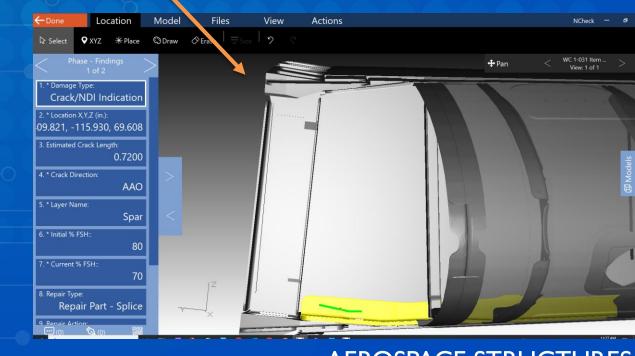
Digital Environments

NLign Analytics Platform

- Small Business Innovation(SBIR) Funding
- NDI data in the beginning
- Sprints of software enhancements (USAF funded)

Timeline of NLign implementation [6]




AEROSPACE STRUCTURES

Digital Data Capture

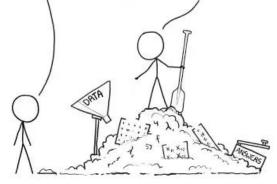
NLign as data capture software replaces logbooks in 2018
NCheck developed with SIBR funding
Full transition to NCheck as data

capture software at the shop floor

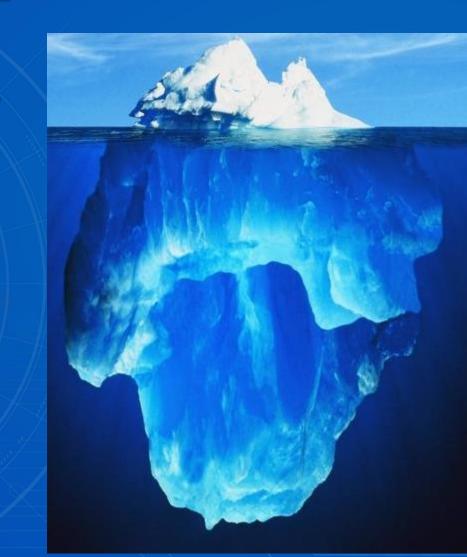
		NCheck — 🗗
		🗹 Level: Task
COT Flight Hours -Tail- 1268.2		
Notes	^{та} 7	ate of Inspection Item 2023-06-15 2 Ll
		11/25 AM

AEROSPACE STRUCTURES

Data Requirements for Prognostics


High Quality Decisive

YUP! YOU POUR THE DATA INTO THIS BIG PILE OF LINEAR ALGEBRA, THEN COLLECT THE ANSWERS ON THE OTHER SIDE.

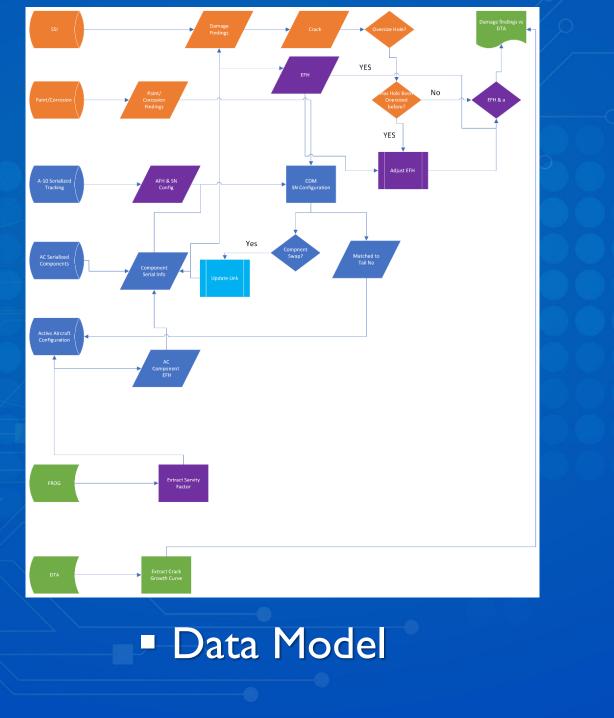

IF THE ANSWERS ARE WRONG?

JUST STIR THE PILE UNTIL THEY START LOOKING RIGHT.

https://xkcd.com/1838/

https://www.tokresource.org/tip-of-the-iceberg

What it takes to meet requirements Data architects -2 full time at A-10 Data quality analyst – I full time at A-10 We are all data wranglers and it takes up a lot of time Accountability from the shop

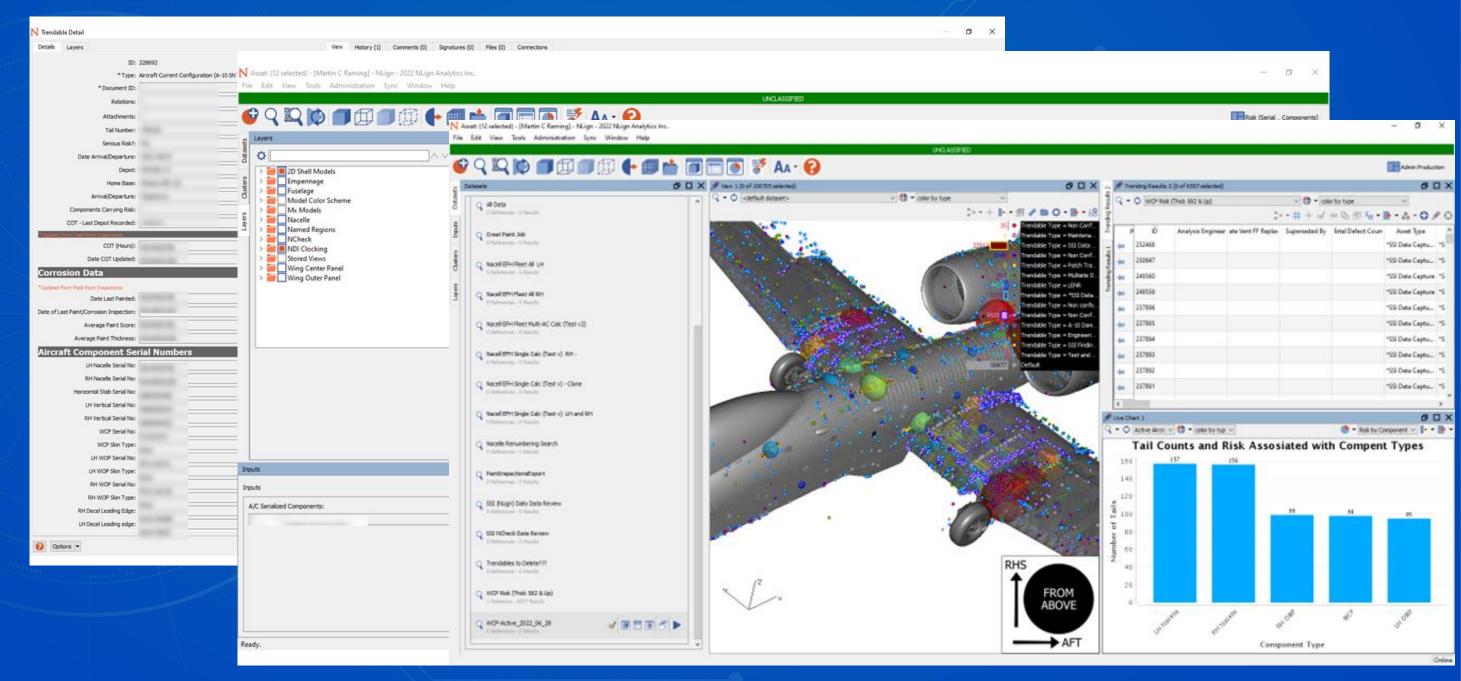

AEROSPACE STRUCTURES

10

Prognostic Data Model

Data alone is insufficient to convey technical statements [6]

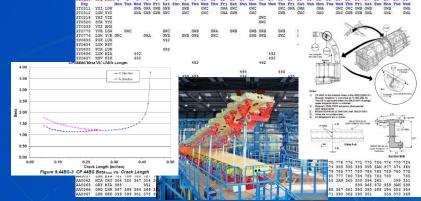
- Structure
- Context
- Relationships



swri.org

Applying the data model with COMs **AEROSPACE STRUCTURES** 11

NLign User Interface and Dashboards



AEROSPACE STRUCTURES

12

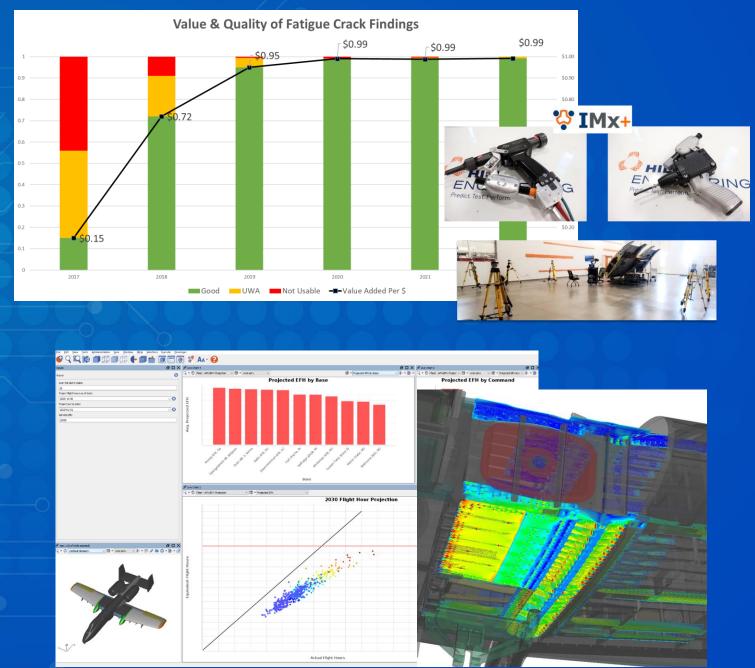
Risk Based Inductions and Prognostics

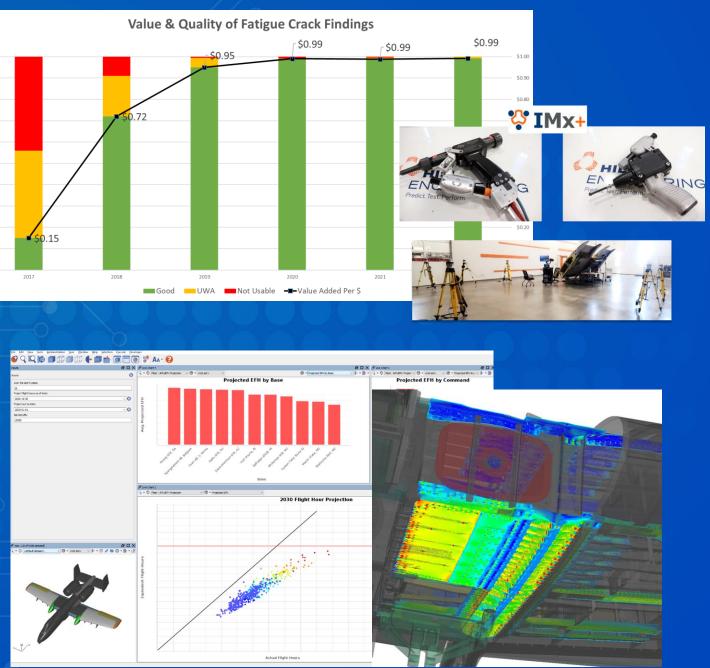
PRoF

- Individual aircraft tracking (IAT) and usage severities
- Fatigue characteristics of specific material
- Unique geometries that are considered the most critical
- DTA
- Fatigue test data

Holistic Prognostics

- High Level overview to component specific
- Live inspection findings
- Repairs
- Maintenance discrepancies
- ETAR, TCTOs, ACI


Predictive depot induction priorities


AEROSPACE STRUCTURES

13

Results

- Risk based induction prioritization
 - ~35% increase in hours on average between inductions
 - Depot burden reduce and cost avoidance of millions
- Instant risk assessment of components, aircraft, and fleet
- Data usability improvements, fewer assumptions
 - ~ 100% captured data
- Data accessibility improvements
 - ~800% Faster
 - XYZ coordinates
 - Continued interaction with maintenance group
- Engineering response time reduced from weeks to days
- Implementation of Smart Tools
- Issues addressed while asset is open and accessible
- 10s of millions \$\$ in cost avoidance

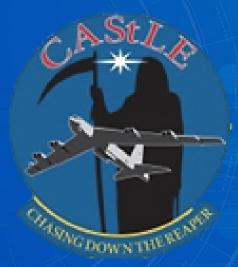
AEROSPACE STRUCTURES

14

Digital Thread and the Lessons Learned

It is not trivial !

Data wrangling consumes a significant amount of human resources A.I. tools are needed to fully implement digital engineering solutions Merging data to be meaningful requires significant effort Culture change at the shop requires effort from all parties Hardware limitations for maintainers is significant IT support is mandatory but often lacking It is critical to consider goals before data collection begins



AEROSPACE STRUCTURES

15

Thank you!

U.S. AIR FORCE

AEROSPACE STRUCTURES

16

References

S. R. Jones and G.A. Zsidisin, "Performance Implications of Product Life Cycle Etension: The Case of the A-10 Aircraft," Journel of Business Logistics, vol. 29, no. 2, pp. 189-214, 2008.

[2]

M. L. Thomsen, P. N. Clark and R. E. Heller, "Development of Cost Effective Organic Engineering Expertise Balancing Weapon System Support Between Goverment and Engineering Support Contractors," in United States ASIP Conference, San Antonio, TX, 2011.

[2]

USAF, MIL-STD-1530D DoD Standard Aircraft Stuctural Integrity Program, 2016.

[4]

R. E. Heller, T. Wilson, M. Thomson Ph.D and P. N. Clark Ph.D., "Development of an Enhanced Wing for the A-10 Wing Replacement Program," in Structural Dynamics and Materials Conference, Honolulu, 2012.

[5]

W. Roper Ph.D., Guidbook for Digtial Engineering "The Bending Spoon", USAF, 2021.

[6]

H. Sedgwick, Interviewee, Orgins of A-10 ASIP use of NLign. [Interview]. 18 April 2023.

[7]

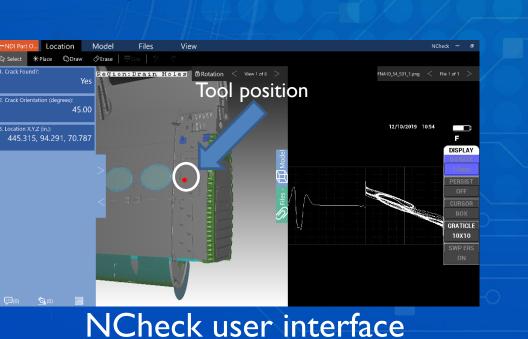
B. Caesar, A. Hänel, E. Wnkler, C. Corinth, S. Ihlenfeldt and A. Fay, "Information Model of a Digital Process Twin for Machining Processes," in IEEE International Conference on Emerging Technologies and Factory, Vienna, austria, 2020.

AEROSPACE STRUCTURES

swri.org

17

Summary



AEROSPACE STRUCTURES

18

Smart Maintenance Tools

- Spatial Position Tracking
 - 4-6 infrared transmitters
 - Requires line-of-sight & provides up to 6 DOF spatial positional accuracy down to 0.01 inch
- Automatic data population with validation checks
- Expanded Digital thread with full data repository
 - NDI full wave form for Automated Defect Analysis
 - Cx Puller key data and process parameters for "full credit"
 - Screenshots, videos, measurements, and report files
- NCheck as user interface and digital thread repository
- A-10 Val/Ver tentatively scheduled for summer of 2023

Spatial position system

©SOUTHWEST RESEARCH INSTITUTE

NDI EC probe

AEROSPACE STRUCTURES

19

The Digital Thread – Legacy Aircraft

Aircraft State at Start of Digital Thread Implementation

- **As-Designed State**
 - 3D CAD assemblies
 - Part materials
 - Design requirements
- **As-Built State**
 - Tests and inspections
 - Discrepant conditions
 - Repairs and modifications
 - Part serialization
- As-Maintained State
 - Usage information
 - Component installation history
 - Tests and inspections
 - Discrepant condition
 - Repairs and modifications
 - Part serialization

Legacy Aircraft Often Have Key **Components of the Digital** Thread ...

- Unavailable
- Variable over time •
- Paper only
- Inconsistent
- Incomplete
- Unreliable \bullet

AEROSPACE STRUCTURES

20

Digital Transition at the Beginning

EWA Wing Replacement Program (the catalysis)

- Model based definition
- Configuration control
- Engineering bill of materials (EBOM)

[4]

AEROSPACE STRUCTURES

21

Data Collection Before Digital Transformation

- Engineering Access 7-9 Months AFTER the aircraft leaves depot
- No guarantee an inspection was performed
- No ability for engineering to address data issues while the asset is open and accessible
- Engineer Tech required to manually input data into database

Limited data type request

AEROSPACE STRUCTURES

22