

Optical simulation of scratch repair in F/A-18C transparencies

Matti Okkonen¹, Aki Mäyrä¹, Aslak Siljander¹ and Mika Siltonen²

¹ VTT ² FDFLOGCOM

07/08/2023 VTT – beyond the obvious

Outline

Background ("XPARENCY" 2013-2016)

- Quantify optical distortions in F/A-18C transparencies ("on a/c")
 - Machine-vision based fully automatic "on a/c" system → new Life Cycle Support service product to Insta (NSN № exists)
- Build add-on features onto developed "on a/c" system
- > Assess scratch repair of transparencies ("on a/c")
 - Expand above optical distortion system:
 - Scratch/dent detection
 - Scratch/dent measurement
 - Repair simulation

Background (see ICAF 2019)

Quantify optical distortions in F/A-18C transparencies ("on-a/c")

The FINAF need

- a fully automated capability to measure & quantify optical distortions "on a/c" transparencies
 - Systematic, reproducible results, remove subjectivity \rightarrow an automated system
 - Classify transparencies to their usability (pass/fail/subject to repair) → provide information for maintenance
 - Service history in view of sustainment aspects → track changes in transparencies
 - Measure without removing transparencies from a/c

FINAF tasked VTT

 Develop an automated, "on a/c" optical distortion detection & quantification system for FINAF F/A-18 transparencies (windshield & canopy)

XPARENCY Phase 1 Lab system ASTM F733 & F2156

"Off a/c" system

XPARENCY Phase 1 Lab system ojector-based Approach (new)

[&]quot;On a/c "system

Scratch detection

SPAD TOF: Laser pulse illumination (picoseconds), records individual scattered photons as a function of time (spot measurement, image by mechanical scanning)

> Goal

 Map scratches/dents (windshield & canopy) with preliminary information about their severity

- Automatic, machine vison-based "on a/c" system
- Pilot's view per zone (move eyes / head / torso)
 - Thru HUD & outside HUD

Two techniques tested in feasibility phase:
 3D LIDAR imaging (SPAD TOF)
 Oark Field Imaging (DFI)

Scratch detection Chosen concept: Dark Filed Imaging

Programmable matrix LED illumination embedded in the "arch"

- Measurement process
 - 1. Turn each led on individually
 - 2. Take image
 - 3. Extract the dark field area (areas surrounding the led)
 - 4. Add to stack

LED 3-N

Scratch measurement

≻ Goal:

 Most potential technology accurate measurement of scratches and dents (emphasis on depth)

o Preferably a hand-held instrument

> Potential technologies:

- 1. Ultrasound, acoustic microscopy (UA, SAM, C-SAM)
- 2. Optical coherence tomography (OCT)
- Depth from focus (DFF) / Focus stacking
- 4. Tilted focal plane imaging (TFPI)

https://www.binghamton.edu/

https://www.reviewofophthalmology.com/ https://www.thorlabs.com/

Scratch measurement

- Depth-from-focus (DFF)
 o Scratch depth estimation principle
 - a) Capture defect images w/ even intervals (depth-wise)
 - b) Estimate the sharpest image in the stack for each pixel position
 - c) Finally, compute the depth of the defect by estimating the top and the bottom (dashed line) of the defect

Scratch measurement Depth-from-focus (DFF) → handheld prototype

Handheld system for defect dimensioning

- o User friendly for "on a/c" maintenance
 - industrial digital camera
 - microscopy optics
 - a motor
 - a microcontroller
 - buttons
 - a color display as a user interface

Scratch measurement

> Reference object w/ real scratches, measured with VTT's profilometers

- White light interferometer Wyko NT3300
 - scanning profilometer, resolution up to 0.1nm
- Stylus based profilometer Veeco Dektak 150
 - resolution up to 1nm
- Optical micrometer
- DFF (DOF)

Repair simulation

Goal: Simple tool for assessing scratch repair and supporting polishing process

Output

- How to do the polishing in order to minimize induced distortion
- Where to do the polishing, maintenance optimization

Process

- 1. Measure distortion map
- 2. Locate and measure scratch/dent
- 3. Try different variations of polishing "shapes
 - Choose a variation
 - Simulate new distortion map based on shape change
 - Choose one with minimal distortion

Repair simulation

Typical simulation geometry for windshield distortions

Modeled optical layout

- o a transparent
- o ASTM-style grid board plane
- o a camera module (lens & sensor)
- Snell's law of refraction
- \succ Ray tracing algorithm (camera \rightarrow gridboard)
 - $_{\rm O}$ Model repair-induced distortion ($\Delta X, \ \Delta$ Y) in view of surface normal N'
 - o All geometry parameters adjustable
 - All transparent's distortions can be mapped to grid board images, similarly as in distortion measurements

Repair simulations were verified experimentally Developed simulation models have been verified with real transparency repairs

A scratch was made, measured and repaired for validating the simulation model

Reference distortion measurement ("off a/c")

Simulated change of surface normals in AOI

VTT

Real repair surface changes match with simulated

Summary

Proof-of-concepts developed & fielded for FINAF F/A-18C transparencies
 An "on a/c" optical distortion quantification system
 An "on a/c" scratch & dent detection & quantification system
 A repair simulation tool verified

➢ Benefits

- Improved Life Cycle Support for individual transparencies
 - New products/services to Insta & Patria
 - Improved a/c availability to the FINAF

Technology available to other a/c types & transparency manufacturers
 VTT willing to help

Thank you! Collaboration is the key to success

> Acknowledgements:

- FDF Joint Systems Centre, Combat Aircraft Section
 - Funding & support throughout the years (ideas \rightarrow feasibility studies \rightarrow proof-of-concepts)
- Finnish Air Force
 - Air Combat Center / Flight Test Section: Pilots' needs & views from cockpit
 - Lapland Air Command: Transparency maintenance, repair, overhaul essentials

– Trano Oy

Insta ILS

• Military aviators' needs & views from cockpit

- Patria Aviation
 - Support in performing the repair trials & for providing related images & data

INS

Guidance from proof-of-concept towards productization

beyond the obvious

Aslak Siljander aslak.siljander@vtt.fi +358 50 555 5857 Matti Okkonen matti.okkonen@vtt.fi +358 40 350 6530 Aki Mäyrä aki.mayra@vtt.fi +358 40 186 4322