

Defence Science and Technology Group

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Titanium Research Experiments on the Classic Hornet (STRETCH) ICAF2023

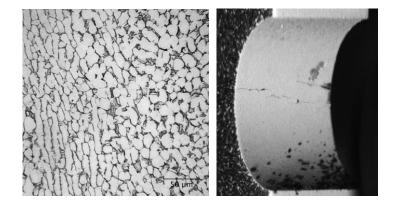
Ben Main, Keith Muller, Isaac Field, Ricardo Filipe do Rosario, Mirco Figliolino, and Simon Barter June 2023

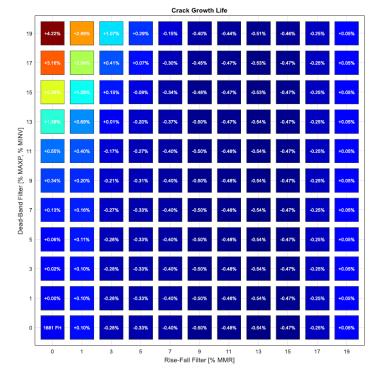
Outline

- Introduction
- Project objectives
- Spectrum development
- Test article preparation
- Test instrumentation
- Durability testing
- Damage Induction
- Damage tolerance testing
- Article teardown
- Conclusion

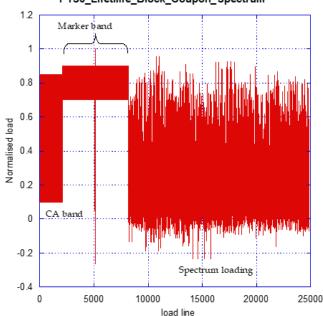
Introduction

- Experimental research partnership focusing on fatigue crack growth in titanium combat aircraft structure.
 - Australian Department of Defence (DoD) partnered with RMIT.
 - Swiss Federal Council Department of Defence, Civil Protection and Sport (DDPS) partnered with RUAG.
- Full scale testing of titanium Swiss F/A-18C/D centre barrel structure.
 - Classic Hornet configuration unique to Swiss Air Force.
 - Similar material utilised in F/A-18E/F/G Super Hornet and F-35 Lightning II operated by the RAAF.
- 2010 DSTG¹ FINAL program tested 18 retired F/A-18A/B centre barrels saved the DOD \$400M [1].


Project objectives


- Collaborate on experimental fatigue crack growth research into titanium combat aircraft centre fuselage structure (the 'test article').
- Provide the Swiss DDPS the experimental evidence and data necessary for optimum ASI management of their F/A-18 fleet and its life extension.
- Provide the DOD with titanium fatigue crack growth research results that will inform the ASI management of their combat aircraft fleet.

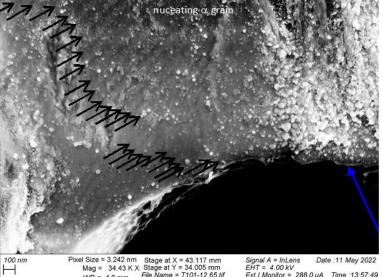
Spectrum development

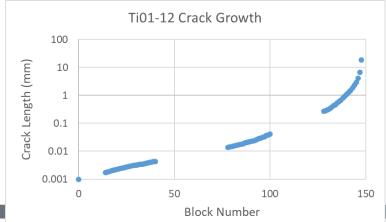

- A series of coupon tests were conducted.
 - Ti-6AI-4V Recrystallised Annealed
 - SEN(T) Coupons
 - Spectrum truncation
 - Marker band studies
- Deadband filter and rise-fall filter trialed.
- Analytical analysis showed deadband filter had more significant detrimental effects.
- 9% rise-fall filter chosen.
 - Reduced load lines by 97.58%.
 - 0.5% analytical life increase.

Spectrum development cont.

- 1 lifetime (6,000 SFH) produced by 20 blocks (300 SFH each).
- Marker band at the end of each block.
- CA¹ block at the start of each lifetime.
 - Equivalent to VA² growth.
 - Marks crack length at the start of each lifetime.
- Marker band primarily high R cycles with underloads.
 - Roughly 10% of total growth.

Name	Min. (normalised)	Max. (normalised)	Cycles
High R	0.7	0.9	1499
Low R	0.05	0.9	20
Load Line	0.02	-	0.5
Load Line	-	0.99	0.5
Load Line	-0.26	-	0.5
Load Line	-	1	0.5
High R	0.7	0.9	1499

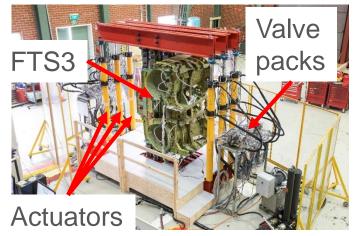

FTS3_Lifetime_Block_Coupon_Spectrum


CA¹ – Constant Amplitude VA² – Variable Amplitude

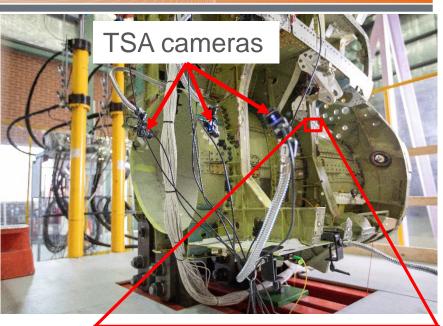
Spectrum development cont.

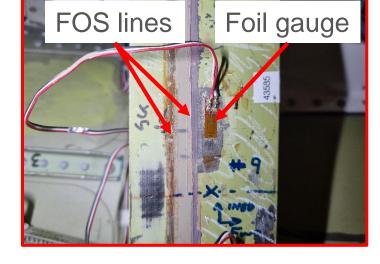
- Coupon tests validated both truncation and marker bands.
- Crack growth curves obtained from Ti-6AI-4V coupons.
 - Down to crack lengths ≈ 1 μ m.
 - Not all regions have visible marker bands.
 - Fastest growing crack is exponential [2].
- Compare FTS3 crack growth data to SLAP predictions.
 - Reassess service life based on improved data.

Further details: Measuring small fatigue crack growth with the aid of marker bands in recrystallized annealed Ti6Al4V. – Session 7, Tuesday.


Test article preparation

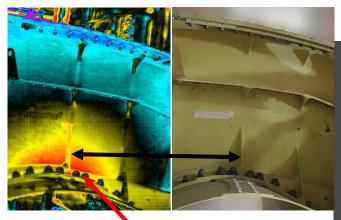
- Centre barrel test article 'FTS3' removed from original full scale fatigue test article 'FTS1'.
 - Original FTS1 test article tested for 10,400 SFH (deemed equivalent of 2 × FTS3 lifetimes).
- Cracked FTS1 structure repaired prior to sending to DSTG.
- FTS3 installed in testing rig.
- 6 × 150 kN actuators apply WRBM loads.

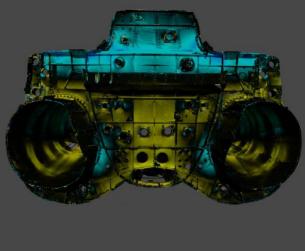

Saw cut



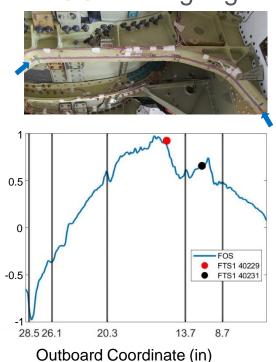
Test instrumentation

- Strain measuring instrumentation:
 - 89 \times foil strain gauges.
 - 8 × Fibre Optic Sensor (FOS) lines.
 - 8 × Thermoelastic Stress
 Analysis (TSA) cameras.
- Other instrumentation:
 - 6 × Linear Variable Displacement Transducers (LVDT).
 Load cells
 - 6 × load cells.



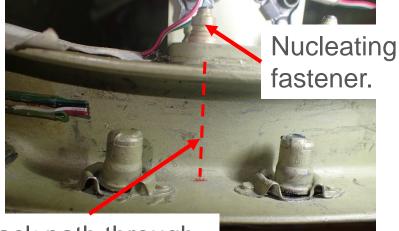

FOS and TSA data

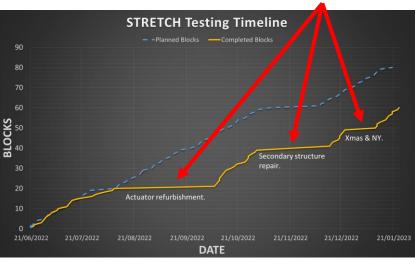
- FOS and TSA is less widely utilised for strain measurements compared to foil gauges.
- FOS generally in close agreement to foil gauges.
 - Provides detailed 2D strain distributions.
- TSA able to provide large coverage strain data.
 - Easily identifies strain hotspots.


Y488 bulkhead upper duct flange hotspot.

TSA map of test article

FOS vs foil gauge

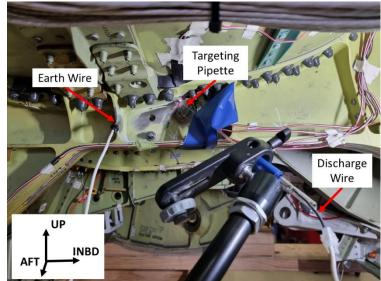

STRETCH – ICAF2023

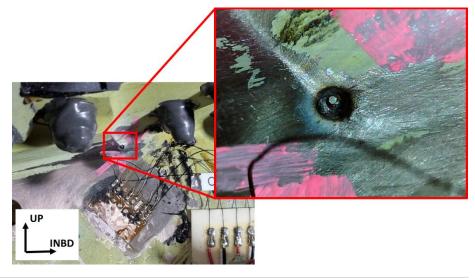

Normalised Strain

Durability testing

- End of 1st lifetime: actuator refurbishment to help with control issues.
- End of 2nd lifetime: minor cracking in secondary structure repaired.
- End of 3rd lifetime: aluminium former cracking found.

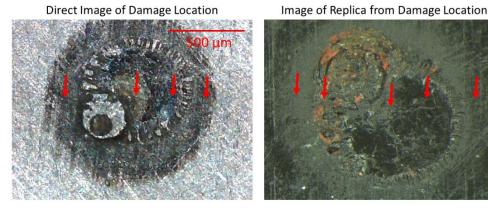
Crack path through secondary structure.

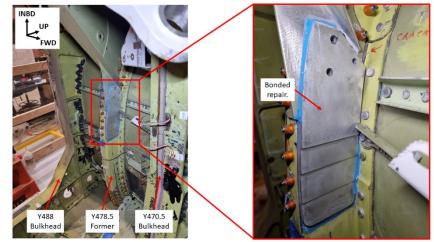



Testing downtime

Damage Induction

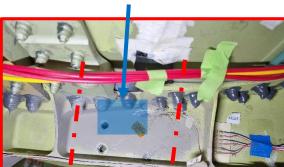
- 17 fatigue hotspots damaged.
- Two unique damage methods used:
 - Plasma arc spot melting.
 - E-Drill modified as EDM.
- Plasma arc ideal for roughly 0.01" damage.
- E-Drill ideal for roughly 0.05" damage.



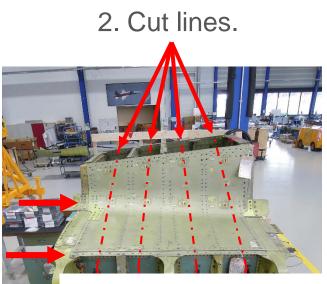

Damage tolerance testing

- Two damage tolerance (DT) lives completed with the third scheduled.
- NDT found crack growth in both an E-Drill and arc burn damage location.
- Significant additional cracking found in aluminium former.
- Bonded aluminium repair of former installed at end of 2nd DT lifetime.

Cracking of arc burn location


Former repair patch


Article teardown


- Break down structure into manageable sections.
- Open existing fatigue cracks and damage locations.
- Conduct fractographic analysis.
- 5. Open region of interest.

3. Remove fasteners and skin.

STRETCH – ICAF2023

1. Remove longerons prior to cutting.

Conclusion

- 5+ lifetimes of testing successfully completed.
- Extensive strain data gathered with significant coverage obtained.
- Some naturally occurring fatigue cracks discovered.
- Crack growth data obtained verifying marker band method.
- Two novel methods of damage induction developed.
- Fatigue crack growth occurring from both damage methods.
- Initial development of the teardown plan completed.

Goals

- Collaborate on experimental FCG research
- Obtain evidence and data for Swiss Hornet ASI management (ongoing)
- Provided DOD with Ti crack growth data (ongoing)

OFFICIAL: Cleared for Public Release

STRETCH – ICAF2023

References

- Molent, L., Dixon, B., Barter, S., White, P., Mills, T., Maxfield, K., Swanton, G., and Main, B. (2009) Enhanced Teardown of Ex-Service F/A-18A/B/C/D Centre Fuselages, In: Proceedings of the 25th International Conference on Aeronautical Fatigue (ICAF) Rotterdam, Netherlands, pg 123-143.
- L. Molent, S. Barter, and R Wanhill, 'The lead crack fatigue lifing framework', In International Journal of Fatigue, 33(3), pp. 323–331, 2011. https://doi.org/10.1016/j.ijfatigue.2010.09.009