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CF-188A/B

No. of aircraft: 138

Initial service life: 6,000 h 
Safe-life

Damage tolerance

Risk assessment

F-35A

No. of aircraft: 88

Initial service life: 8,000 h 

(90% of fleet)

Durability and damage tolerance life 

requirements

(MIL-STD 1530)

Can we do better than current ASIP force management execution methods?
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• Definition

• Overview of NRC’s Airframe Digital Twin Framework

• Initial Crack Size Distribution (ICSD)

• Bayesian Inference of Crack Size Distribution (CSD)

• CF-188 Case Study

• Concluding Remarks
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Airframe Digital Twin (ADT)
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Digital representation that mirrors 

and predicts usage and performance 

over the life of a specific individual 

airframe.

• Representative of as-built, 

as-operated, and as-maintained 

airframe system

• Simulations that use best available 

models, sensor information, and data

• Multi-physics, multi-scale, 

probabilistic

Definition
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Test article 

(ILEF lugs)

Global FE model

Local FE model and 

submodel

Load uncertainty 

and forecasting  

Damage state (cracks) 

probabilistic Models 

Fracture mechanics 

models and Monte 

Carlo CG

Transfer Functions
Individual a/c hazard probability: 

current and future health 

condition, cost/availability impact

Updating

Sensor data 

More representative digital models

More accurate structural integrity assessments

Better-informed maintenance decisions



Airframe Digital Twin (ADT) Framework

Each fatigue critical area (FCA) of each aircraft is unique:

• Physical model:

• Nominal dimensions and properties

• Distinct dimensions and properties (as needed)

Overview



Airframe Digital Twin (ADT) Framework
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Overview

Local ModelCF-188 inboard leading edge 

flap lugs with modifications

Simplified Local 

Modelling

Sub-Modelling

Representative CAD

Fracture Mechanics 

Analyses

Global FE Model

Picture from Korona Lacasse

Source: https://en.wikipedia.org/wiki/McDonnell_Douglas_CF-18_Hornet



Airframe Digital Twin (ADT) Framework
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Each fatigue critical area (FCA) of each aircraft is unique:

• Usage:

• Past History: IAT data (strains, accelerations, maneuvers, mission, etc.)

• Forecast: Random spectra based on expected mission mix

Overview
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Airframe Digital Twin (ADT) Framework
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Each fatigue critical area (FCA) of each aircraft is unique:

• Damage: 

• Past History: Predicted crack size distribution over time based on known usage

• Update: Infer crack size distribution from NDI results at inspection

• Forecast: Forecast crack size distribution from projected usage

Overview
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𝑐

𝑓𝑐

Past → Present

(known usage)

PCG 𝑐

𝑓𝑐

Updated → Future

(unknown usage)

𝑐

𝑓𝑐

Present → Updated

(Bayesian inference from NDI)

Updated

PCG

PCG: Probabilistic Crack Growth
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Concept
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Airframe Digital Twin (ADT) Framework
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Conceptual Example with a Single Inspection
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Initial Crack Size Distribution
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• Initial crack size distribution has significant effect on the 

resulting POF and inspection intervals.

• Many approaches:

• Probability of missing a crack after manufacturing:

• From un-informed prior crack size distribution (i.e. uniform)

• From known prior crack size distribution

• Quantitative fractography

• Mixing different sources of nucleation features:

• Pores

• Corrosion pits

• Scratches

• …

NATIONAL RESEARCH COUNCIL CANADA
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Easy to solve using Bayes inference.

Requires POD-curve and prior crack size distribution.

Focus of today’s discussion



Initial Crack Size Distribution (ICSD)
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The ICSD was represented using a 

mixture model:

𝒇𝒄 = 𝒘𝒇𝒔𝒄𝒓𝒂𝒕𝒄𝒉 + 𝟏 − 𝒘 𝒇𝑬𝑷𝑺

Mixture Distribution Model
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𝑓𝐸𝑃𝑆 Equivalent Precrack Size (EPS) distribution from 

specimens that were peened. Most cracks nucleated 

from laps and folds produced by peening1

𝑓𝑠𝑐𝑟𝑎𝑡𝑐ℎ Scratch size distribution2

𝑤 Probability of having a scratch [0,1]

𝑓𝑐 Crack size distribution (mixture model)

𝑐 Crack size

NOTES:

1: L. Molent, Q. Sun, and A. Green, "Characterisation of equivalent initial flaw sizes in 7050 aluminium alloy," Fatigue & Fracture of Engineering Materials & Structures, 

vol. 29, no. 11, pp. 916-937, 2006.

2: D. Ball, "Examination of Durability and Damage Tolerance Design Criteria," in USAF Aircraft Structural Integrity Program Conference, San Antonio, Texas, United 

States of America, 2012.

𝑓𝐸𝑃𝑆

𝑓𝑠𝑐𝑟𝑎𝑡𝑐ℎ



Modifies the weight of the constituting distributions

(constituting mixture distributions are intact)

Modifies the constituting mixture distributions

Bayesian Inference of Crack Size Distribution (CSD)
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Two Approaches; Two Meanings
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Mixture weight inference:

𝑝 𝑤 𝑜𝑏𝑠 =
𝑝 𝑜𝑏𝑠 𝑤 𝑝 𝑤

𝑝(𝑜𝑏𝑠)
𝑝 𝑐 𝑜𝑏𝑠 =

𝑝 𝑜𝑏𝑠 𝑐 𝑝 𝑐

𝑝(𝑜𝑏𝑠)

Decrease 

probability of 

large cracks

Increase probability of EPS

Decrease 

probability of 

scratch
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ഥ𝑤=0.34

Bayesian Update
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(found or not found)

Inference at inspection

Direct CSD inference:



Bayesian Inference of Crack Size Distribution (CSD)
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Two Approaches; Two Meanings
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• Mixture cannot be separated after 

inference

• Can growth slower than EPS distribution



Bayesian Inference of Crack Size Distribution (CSD)
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Two Approaches; Two Meanings
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Mixture weight inference:

• If confident in constituting ICSD

• Cannot grow slower than EPS 

distribution

• Constituting CSD can be used fleet 

wide; weight adjusted on a tail-basis

• Numerical advantage for sampling

• No significant impact on resulting CSD 

for tested cases. Further investigation 

required. 0.0001
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CF-188 Inboard Leading Edge Flap (ILEF) Lugs
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Effect of Inference Methods
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CF-188 Inboard Leading Edge Flap Lugs
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Effect of Probability of Nucleating from a Scratch
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Decreasing the % of cracks 

nucleating from scratches:

• Decreases risk

• Increases time to acceptable risk limit 

(10-4 SFHPOF)

• Affects inspection interval

Assuming that 100% of cracks are 

nucleating from scratches is possibly 

conservative but is it realistic?

ICSD modelling using mixture model 

provides the flexibility of adjusting 

the assumptions based on data and 

engineering assumptions.

Note: SFPOF calculated using Lincoln Equation



Concluding Remarks
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• NRC developed an ADT framework and in-house algorithms 

• Features:

• Probabilistic crack growth algorithms

• Probabilistic load estimations and forecasting

• High-fidelity finite element models

• Crack size updating from non-destructive inspection results

• Advanced risk-based approaches

• ADT Framework successfully tested using CF-188 Inboard Leading Edge Flap 

(ILEF) component test

• Used as a benchmark problem for the development and testing of new features

• Comparison with CF-188 Lifing Methods

• Sensitivity analyses

ADT Framework
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Concluding Remarks
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• Used to mix identifiable and quantifiable sources of damage

• Specimens: typically only pores or surface features

• In-service findings: pores, surface features, scratches, corrosion pits,...

• Probability of having scratches and pits could increase over time…

• Different initial damage types could have different growth models:

• Crack growth models for pores and scratches (function of loading cycles)

• Corrosion models for pits (function of time and environment)

• Synergy between the models: pits → fatigue cracks

Crack Size Distribution Modelling using Mixture Distributions
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QUESTIONS?

Contact information:

Yan Bombardier

yan.bombardier@nrc-cnrc.gc.ca
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