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Using digital twins to accelerate 
qualification and certification of fatigue 

critical components
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CLIENT SUCCESS: HIGH-PERFORMANCE ALLOYS

Ferrium ® M54 ® Hookshank

Novel Materials improve existing products 

From clean sheet alloy 

design to flight, this ICME-

based program 

demonstrates the goals set 

by the 2011 Materials 

Genome Initiative.

NIST Report (2018)
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MOTIVATION

IMPROVE RELIABILITY 
AND REDUCE 
COST/TIME FOR 
QUALIFICATION OF 
FATIGUE CRITICAL 
ADDITIVELY 
MANUFACTURED 
ALLOYS

Outline

▪Digital Twin for material PSP system

▪Accelerated Insertion of Materials (AIM)

▪Multi-Stage Fatigue

▪Microstructure Sensitive Fatigue Modeling

▪ ICMD® Software demo
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Digital Twin for material PSP system
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PROCESS-STRUCTURE-PROPERTY MAP
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PROCESS-STRUCTURE-PROPERTY MODELING

AM Process Simulation Grain Structure

CALPHAD

Crystal Plasticity Fatigue

Strength and Ductility
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Accelerated Insertion of Materials
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ACCELERATED INSERTION OF MATERIALS (AIM)
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AIM APPLIED TO TENSILE STRENGTH OF AM IN718+

Mechanistic 

Property Models
Property Predictions 
(TYS, UTS, RT-1000°F)

Design Allowables 

Forecasting

Modeling-informed heat treatment optimization resulted in mean YS improvement 

from 940 to 952 MPa and 1% min. YS improvement from 896 to 934 MPa
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Multi-Stage Fatigue
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MULTI-STAGE FATIGUE

Incubation occurs at 

persistent slip bands or 

pre-existing defects at 

the sub grain scale

Microstructurally small cracks grow 

through several grains, being slowed 

by grain boundaries and meandering to 

the path of least resistance

Physically long cracks begin 

once the plastic zone at the 

crack tip becomes appreciably 

larger than grains, resulting in 

an averaging effect such that 

crack follows linear elastic 

fracture mechanics
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MULTI-STAGE FATIGUE

1. Identify key stress hot spots from 

component scale loading conditions

2. Apply microstructure sensitive fatigue modeling 

framework at mesoscale to predict component life 

3. Combine microstructurally small crack and long crack models for 

full component life in high or low cycle fatigue

Localized plastic strain

FIP

Microstructurally 
small crack growth

Microstructurally small cracks - CPFEM Physically long cracks – Modified-NASGRO Full Fatigue Life 14
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Micro-Structure Sensitive Fatigue 

Crack Initiation
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FATIGUE CRACK INITIATION MODEL

▪ Crystal Plasticity Fatigue 

Modeling

• Simulates:

➢ Crack Initiation and MSC 

Growth

➢ Low- and High-Cycle Fatigue

• Used For:

➢ Minimum Fatigue Life

➢ Component-scale Performance

• Calibrated with:

➢ Cyclic (10) stress-strain data

▪ 2 Strain Ratios (R=-1, 0.1)

▪ 2 Orientations

➢ VHCF Fatigue life data
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CHARACTERIZATION AND DIGITAL TWIN

EBSD

• Grain size

• Volume fractions

• Crystallographic Texture

Coherence Scanning Interferometer-

based 3D Surface Analysis

• As-built surface roughness

• Post-processed surface roughness

SEM

• Porosity statistics (pre- and post-HIP)

• Inclusion statistics and chemistry (From 

EDS)
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CHARACTERIZATION AND DIGITAL TWIN

• Generate digital microstructures with 

appropriate grain morphology, 

phases, and crystallographic texture

• Add surface roughness, 

porosity/inclusions to digital 

microstructures
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MODEL CALIBRATION

• Conduct cyclic tensile/compressive tests on coupons 

in Z (build) direction and XY (orthogonal) direction for 

~10 cycles 

• Alternatively yield strength and modulus of elasticity 

can be predicted using mechanistic models to 

calibrate CPFEM model
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FATIGUE INDICATOR PARAMETERS

• Fatigue indicator parameters are a surrogate measure of driving forces for fatigue crack initiation and 

microstructurally small crack growth

max max1
2

p n

FS

y

FIP k
 



 
= + 

  

20



FIP ANALYSIS USE CASES

• Example 1 – Study of effect of maximum 

pore size on fatigue performance in AM 

Ti64 can be used to determine critical 

pore size

• Example 2 – iso-FIP contour showing 

fatigue performance in complex strain 

states can be used for topological 

optimization of fatigue critical 

components

Pure shear
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ICMD® Software Platform
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ICMD® PLATFORM

• Productizing our proven library of software, 
databases, models, and analytics: ICMD®

• Platform toolkits: 
– Alloy Design
– Alloy Qualification
– CALPHAD (‘24)
– Fatigue Simulation (‘24)
– Additive Simulation (‘24)

• Packaged as a SaaS offering via web-
accessible

      cloud-based Integrated Digital Environment

• Licensing and subscription availability next 
month!
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