Test and Analysis of Fuselage Structure to Assess Emerging Metallic Structures Technologies

Yongzhe Tian¹, Dave Stanley¹, John Bakuckas¹, Kevin Stonaker¹, Mike Kulak², Kimberly Maciejewski³,

Walt Sippel⁴, Marcelo R. B. Rodrigues⁵, Fabricio Fanton⁵, Carlos E. Chaves⁵

¹ FAA William J. Hughes Technical Center
² Diakon Solution
³ Arconic Technology Center

⁴ FAA Technical Innovation Policy Branch

⁵ Embraer

ICAF, June 26-29, 2023, Delft

Team Members

Kimberly Maciejewski

Mike Kulak (ret. Arconic) Henry Skylut (ret. Arconic) Paul Swindell (ret. FAA) Reza Bahadori

Jim Ward Kevin Randich Marcelo Bertoni Fabrício Fanton Willy Mendonca Fernando Dotta Tanila Faria Carlos Chaves

Terry Zhang Jonathan Awerbuch Tein Min Tan

Yongzhe Tian Dave Stanley Kevin Stonaker Danielle Stephens Burak Kumas Walt Sippel Patrick Safarian Michael Gorelik John Bakuckas

WICHITA STATE UNIVERSITY NATIONAL INSTITUTE FOR AVIATION RESEARCH

Paul Jonas Andy Jonas Jacob White Ron Weddle

Outline

- Background and Project Overview
- Fixture, Panel and Test Phases
- Panel 1-3 Test Results
- Summary and Future Work

Assessment of Emerging Technologies Advanced Metallic Fuselage Structure

- **Background**: Significant advancements made in emerging metallic structures technology (EMST) aimed at improved performance and reduced cost compared to composites
- **Purpose**: Assess fatigue and structural integrity of EMST for fuselage applications
- **Approach**: Partner with industry to conduct full-scale test and analysis of using the FAA's FASTER and SML lab
- **Outcome**: Gather data which will be used to ensure safe implementation of EMST

Project Objectives

- Assess EMST in collaboration with industry leveraging unique FAA structural testing capabilities
- Provide a better understanding of advanced technologies and help ensure their safe implementation in aircraft products
- Identify unique damage mechanisms, damage-tolerance behavior and MSD scenarios associated with EMST
- Explore applicable inspection methods including integrated Structural Health Monitoring (SHM)
- Verify analytical methods and generate data to support certification, and continued airworthiness of EMST

Technologies Considered

1.50 FtuAdvanced Alloys Values are ratio of alloy property to Alc. Advanced Alloys: 2524-T3 * R-curve is K_R change at ∆a_{eff}=40mm ** FCG is ∆K change at da/dN=1E-02 40 mm/cvcle 2524-T3 (Baseline) .30 .20 Densit Fty, LT – 2060-T8 Al-Li Skin -10% -8% .00 -6% 2029-T3 Clad -4% 0.90 7075-T62 (Baseline) 0.80 **Extrusions** 7150-T77511(Baseline) – 2055-T8 Al-Li FCG. T-L** Et 2099-T83 Al-Li Alc. 2524-T3 Bare 2060-T8E30 Bare 2029-T8 R-Curve, T-L* Alclad 2029-T8 Hybrid Structure Hybrid Construction and Fiber Metal Laminates **Bond-Preg Layers** GLARE FML Al Sheets GLARE Reinforcement Straps Improve damage containment **GLARE Straps under Built-Up** Variant of Advanced Hybrid CentrAl Concept

FASTER Fuselage Panel Test Matrix

		1	— 1—		<u> </u>	4	5
Focus: Fatigue crack growth and residual strength			Baseline	Advanced Density Reduction	Advanced Materials	FML Reinforced	FML Reinforced (Optimized for Weight)
	nponent	Skin	2524-T3 sheet	2060-T8E30 Al-Li sheet	2029-T3 sheet	2524-T3 sheet	2524-T3 sheet
		Stringer	7150-T77511 extrusions, riveted	2055-T84 AI-Li extrusions, riveted	2055-T84 Al-Li extrusions, riveted	7150-T77511 extrusions, with FML straps	7150-T77511 extrusions, with FML straps
	Cor	Frame	7075-T62 - shear tied, extruded, riveted	2099-T83 Al-Li integral extrusions, riveted	2099-T83 Al-Li integral extrusions, riveted	7075-T62 - shear tied, extruded with FML straps	7075-T62 - shear tied, extruded with FML straps
	Schedule	Start	Oct-17	Jan - 19	July - 21	Sep - 23	Jan - 25
		Finish	Dec-18	July -21	Aug - 23	Dec – 24	Dec - 25

Target Location and Loads

- Crown of fuselage forward of wing:
 - Cabin pressurization (Hoop and Axial)
 - Flight Loads : Gusts and Maneuver (Axial)
 - Landing Load (Axial)
- Flight loads represented by 50% Mini-TWIST spectrum

Outline

- Background and Project Overview
- Fixture, Panel and Test Phases
- Panel 1-3 Test Results
- Summary and Future Work

Full-Scale Aircraft Structural Test Evaluation and Research (FASTER)

- History and Background:
 - Established: Dec. 1998 through cost share partnership with Boeing
 - Purpose: Support the FAA's Aircraft Safety Mission

- Applies Major Modes of Loading to Fuselage Panels:
 - Pressure
 - Ноор
 - Axial
 - Temperature
 - Humidity

- Mechanical
- Environment

Panel Dimensions

Monitoring Methods

Eddy Current

Digital Image Correlation

Structural Health Monitoring

Strain Gage Map

- 142 channels of strain gages
 - Skin: 18 external rosettes, 16 internal rosettes
 - Stringer: 20 uniaxial gages
 - Frame: 20 uniaxial gages

Test Procedure, Phase 1 – Circumferential Crack

- Insert Crack and Sever Stringer
- Baseline Strain Survey
- Fatigue Crack Growth
 - Strain Survey
 - o Visual
 - o Eddy Current
 - o **DIC ARAMIS**
 - SHM Acellent & Metis

- Limit Load Test

- o Visual
- **DIC ARAMIS**

Test Procedure, Phase 2 – Longitudinal Crack

- Repair Phase 1 Damage
- Insert Crack and Sever Frame
- Baseline Strain Survey
- Fatigue Crack Growth
 - o Strain Survey
 - o Visual
 - Eddy Current
 - o **DIC ARAMIS**
 - SHM Acellent & Metis

- Residual Strength

- o Visual
- o **DIC ARAMIS**

Outline

- Background and Project Overview
- Fixture, Panel and Test Phases
- Panel 1-3 Test Results
- Summary and Future Work

Panel 1 vs. Panel 2 vs. Panel 3

		Panel 1 Baseline	Panel 2 Advanced Density Reduction	Panel 3 High strength, corrosion- resistant	
Component	Skin	2524-T3 sheet, 1.5mm	2060 - T8E30 Al-Li, <mark>1.27mm</mark>	2029 – T3, 1.35mm	
	Stringer	7150-T77511 extrusions, riveted	2055 -T84 Al-Li extrusions, riveted	2055 -T84 AI-Li extrusions, riveted	
		7075-T62 – floating frame, shear tied, extruded, riveted	2099 - T83 Al-Li integral frame and shear tie extrusions, riveted	2099 - T83 Al-Li integral frame and shear tie extrusions, riveted	
	Frame				

Challenges for Comparison

- Differences in panel skin dimensions inherent in manufacturing tolerances:
 - Panel skin thickness different between panels approx. 15%
 - Consequently, strains are different under the same applied load
 - Poses challenges for demonstrating performance difference between Panel 1~ 3
- Developed consistent approach to determine applied loads while accounting for varying thickness by keeping the same crack drive forces (stress-intensity factors) between panels
 - Stress intensity factors were determined by Finite Element Method using multiple 3D elements through thickness

Determination of applied loads by matching stress intensity factor

■Panel 1 1.5mm

Panel 2_1.27mm Panel 3_1.35 mm

Phase 1 Baseline Strain Survey -Test and Analysis

Panel 2 Phase 1

---FEM ---ARAMIS

Crack Path Morphology – Panel 2

Phase 1 Circumferential Crack Growth Comparison

■ P1_top ● P1_bottom ■ P2_top ● P2_bottom ■ P3_top ● P3_bottom

Phase 1 Limit Load Test – Panel 3

Phase 1 Limit Load Test – Panel 3 Stringer Strains

Phase 2 Longitudinal Crack Growth Comparison

● P1_Left ■ P1_Right ● P2_Left ■ P2_Right ● P3_Left ■ P3_Right

Phase 2 Residual Strength - Panel 1

Phase 2 Residual Strength - Panel 1

Outline

- Background and Project Overview
- Fixture, Panel and Test Phases
- Panel 1-3 Test Results, Phase 1
- Summary and Future Work

Summary

- Proactive government-industry partnership to understand potential fatigue and structural integrity issues associate emerging metallic structures technology (EMST)
- Obtain data to assess the damage tolerance of fuselage panels utilizing EMST through full-scale test and analysis
- Target Technologies:
 - Advanced alloys including next generation aluminum-lithium and clad aluminum
 - Hybrid structure including use of selective reinforcement with fiber-metal laminates
- Fuselage Panels 1 3: Advanced Alloys
 - Differences in panel skin dimensions inherent in manufacturing tolerances. Poses challenges for demonstrating performance difference between panels
 - Developed consistent approach to determine applied loads while accounting for varying thickness by keeping the same stress-intensity factors between panels
 - Demonstrated improvements in fatigue crack growth performance using EMST (advanced alloys) compared to baseline materials
 - Leveraged resources to assess SHM capability to detect and track skin cracks

Future Work

- Complete comparison of Phase 2 Longitudinal Crack Scenario for Panels 1 – 3.
- Fuselage Panels 4 and 5: FML reinforcement
 - Complete design concept and fabricate metallic fuselage panels reinforced with FML under substructure to demonstrate improved damage containment capabilities

FML reinforcement

Questions?

Yongzhe Tian: Yongzhe.Tian@faa.gov609-485-5075Dave Stanley: Dave.Stanley@faa.gov609-485-4073John Bakuckas: John.Bakuckas@faa.gov609-485-4874

31