This document and the information contained herein is the property of Saab AB and must not be used, disclosed or altered without Saab AB prior written consent.

FATIGUE AND DAMAGE TOLERANCE TESTING OF GRIPEN 39E/F RUDDER

31st ICAF Symposium – Delft, 26-29 June 2023

Jan Erik Lindbäck

Background

- Gripen 39E is the single seater (many A/C)
- Gripen 39F is the 2-seater (fewer A/C)
- The same Rudder for 39E and 39F, but different load sequences
- From Fatigue and DT-analysis of the Rudder: 39E show full life but not 39F

39E Single-seater Aircraft

- 1. Run the more severe 39F-sequence that will cover also 39E
- 2. Run two separate tests for 39E and 39F
- 3. Run the 39E-sequence first and continue with the 39F-sequence
- 4. Run the 39E-sequence first, then continue the 39E-sequence scaled with a factor 1.2

Test rig and test setup

- The Rudder test was performed by VTT in Espoo, Finland
- Three actuators to apply air-loads via a whiffle tree and 16 pads on each side of the Rudder
- Two actuators to simulate the mid hinge reactions
- A load cell to monitor the reacting Jack load
- Displacement transducers and strain gauges
- Approximate 75 hours to run one design life

<u>Test set-up before rudder mounting.</u> Figure courtesy of Arecap Ltd, A. Mattila

Test Procedure

- Test Procedure, part 1 to verify 39E
 - 1. Run up to 2 Design Life with 39E-loads
 - 2. Introduce artificial defects
 - 3. Run up to 4 Design Life with 39E-loads
 - 4. Perform Residual Strength to 120%LL
- Test Procedure, part 2 to verify 39F
 - 5. Run up to 5.75 Design Life with 39E-loads scaled with a factor of 1.2
 - 6. Perform Residual Strength Test to 144%LL (1.2*120%)

Five defect positions of which #3 at the Jack actuator was most critical

Test Results, defect #3, Jack Lug

- Ended the test after 5.75 Design Life
- Defect #3 was then 6.8mm
- Close to critical crack length
- Inspections with Eddy Current and Penetrant to detect crack growth

Fatigue damage analysis

39F Fatigue life analyzed to: 2.9/4=72% of full life

Crack growth analysis

39F DT life analyzed to: 1.41/2=71% of full life

Discussion/Conclusion

- The current test and analysis approach has verified full life for 39E sequence and at least 70% of full life with 39F sequence.
- Judging by the predicted cumulative damage, and predicted and measured crack growth rate, it is doubtful that 4 DL of safe-life and 2 DL of DT testing could have been reached either with 39F sequence or with continued testing with the 1.2x39E sequence.
- However, 70% of full life is substantial and is considered as an appropriate time to first in-service inspection.

Discussion/Conclusion

- The current test and analysis approach has verified full life for 39E sequence and at least 70% of full life with 39F sequence.
- Judging by the predicted cumulative damage, and predicted and measured crack growth rate, it is doubtful that 4 DL of safe-life and 2 DL of DT testing could have been reached either with 39F sequence or with continued testing with the 1.2x39E sequence.
- However, 70% of full life is substantial and is considered as an appropriate time to first in-service inspection.

Thank You for Listening

The test team:

- Testing: Risto Laakso, VTT Technical Research Centre of Finland Ltd.
- Analysis: Allan Gustavsson, Saab AB
- Methods: Zlatan Kapidžić, Saab AB
- Test Lead: Jan Erik Lindbäck, Saab AB

