COMPRESSION AFTER IMPACT FATIGUE DAMAGE GROWTH IN CFRP – WHAT DOES NO-GROWTH REALLY MEAN?

Davide Biagini*, John-Alan Pascoe, René Alderliesten

*<u>D.Biagini-1@tudelft.nl</u>

Delft University of Technology

Aerospace Structures & Materials

CAI fatigue in CFRP

No observed growth ≠ no absolute growth

projected delaminated area

CAI fatigue in CFRP

No observed growth ≠ no absolute growth

projected delaminated area

What is growth in CFAI?

Barely Visible Impact Damage

Fatigue after impact: plateau or gradual growth?

1. No-growth of projected area

Fatigue behavior and lifetime distribution of impact-damaged carbon fiber/toughened epoxy composites under compressive loading

Toshio Ogasawara , Sunao Sugimoto , Hisaya Katoh & Takashi Ishikawa

3. Gradual growth projected area

Composites Science and Technology 59 (1999) 2059-2078

COMPOSITES SCIENCE AND TECHNOLOGY

Effect of loading parameters on the fatigue behavior of impact damaged composite laminates Milan Mitrovic^a, H. Thomas Hahn^{a,*}, Greg P. Carman^a, Peter Shyprykevich^b ^{Mechanical and Aeropace Engineering Department, University of California, Los Angeles, CA 90095-1597, USA ^{Mechanical and Aeropace Engineering Department, University of California, Los Angeles, CA 90095-1597, USA ^{Mechanical and Aeropace Engineering Department, University of California, Los Angeles, CA 90095-1597, USA ^{Mechanical and Aeropace Engineering Department, University of California, Los Angeles, CA 90095-1597, USA ^{Mechanical and Aeropace Engineering} Department, University of California, Los Angeles, CA 90095-1597, USA ^{Mechanical and Aeropace Engineering} Department, University of California, Los Angeles, CA 90095-1597, USA ^{Mechanical and Aeropace Engineering} Department, University of California, Los Angeles, CA 90095-1597, USA ^{Mechanical and Aeropace Engineering} Department, University of California, Los Angeles, CA 90095-1597, USA ^{Mechanical and Aeropace Engineering} Department, University of California, Los Angeles, CA 90095-1597, USA ^{Mechanical and Aeropace Engineering} Department, University of California, Los Angeles, CA 90095-1597, USA ^{Mechanical and Aeropace Engineering} Department, University of California, Los Angeles, CA 90095-1597, USA ^{Mechanical and Aeropace Engineering</sub> Department, University of California, Los Angeles, CA 9005-1597, USA ^{Mechanical and Aeropace Engineering</sub> Department, University of California, Los Angeles, CA 9005-1597, USA ^{Mechanical and Aeropace Engineering</sub> Department, University of California, Los Angeles, CA 9005-1597, USA ^{Mechanical and Aeropace Engineering</sub> Department, University of California, Los Angeles, CA 9005-1597, USA ^{Mechanical and Aeropace Engineering</sub> Department, University of California, Los Angeles, CA 9005-1597, USA ^{Mechanical angeles, CA 9005} Department, University of California, Los Angeles, CA 9005-1597, USA ^{Mechanical angeles, CA 9005} Department, University of}}}}}}}}}

Experimental procedure

Echo-pulse ultrasound scan (Dolphicam 2)

Acoustic emissions

1. LVI test

2. CFAI test

Growth inside the non delaminated cone must be considered

Preferential growth of short delamination

Preferential growth of short delamination

Growth of projected delaminated area is not sufficient

Acoustic emissions monitoring

no growth in the C scan \neq no damage growth

NO-growth design philosophy

Testing campaign to ensure that BVID will not grow due to fatigue

The growth/no-growth is evaluated using ultrasounds

Conclusions

Combining multiple techniques \longrightarrow **better understanding**

No-growth phase could be an artefact of unprecise damage description

- growth in the non delaminate cone
- growth of short delamination
- *low frequency AE during early stages of fatigue*

CAI fatigue growth definition should consider damage in its entire complexity

- = Setup
- ≠ Impact energy
- ≠ Layups

V Final growth 90 deg direction

Composites Science and Technology 61 (2001) 1841-1852

COMPOSITES SCIENCE AND TECHNOLOGY

www.elsevier.com/locate/compscitech

Buckling behaviour and delamination growth in impacted composite specimens under fatigue load: an experimental study

L. Gunnar Melin*, Joakim Schön Swedish Defence Research Agency, SE-172 90 Stockholm, Sweden

Received 5 January 2001; received in revised form 22 May 2001; accepted 7 June 2001

21st International Conference on Composite Materials Xi'an, 20-25th August 2017

FATIGUE LIFE AND FAILURE OF IMPACT-DAMAGED CARBON FIBRE COMPOSITES UNDER COMPRESSIVE CYCLIC LOADS

Fan Xu, Wenli Liu* and Phil E. Irving

Centre of Aeronautics, Cranfield University, Cranfield MK43 0AL, UK *Corresponding author (wenli.liu@cranfield.ac.uk)

X Final growth 90 deg direction

Contents lists available at ScienceDirect **Composites Science and Technology**

journal homepage: www.elsevier.com/locate/compscitech

Compression fatigue failure of CFRP laminates with impact damage

Nobuhide Uda^{a,*}, Kousei Ono^a, Kazuo Kunoo^b

^a Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan ^b Department of Aerospace Systems Engineering, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan

≠ Setup

Composites Science and Technology 59 (1999) 2059-2078

COMPOSITES SCIENCE AND TECHNOLOGY

Effect of loading parameters on the fatigue behavior of impact damaged composite laminates

Milan Mitrovic^a, H. Thomas Hahn^{a,*}, Greg P. Carman^a, Peter Shyprykevich^b

*Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA 90095-1597, USA ^bFAA William J. Hughes Technical Center, Atlantic City International Airport, NJ 08405, USA

Received 26 July 1998; received in revised form 5 March 1999; accepted 12 April 1999

N = 100

N = 1,000

N = 10,000

