

U.S. AIR FORCE

THE A-10 WARTHOG: DAMAGE TOLERANCE AND RESIDUAL STRESS IN TRANSITION

Jacob Warner and Dallen Andrew

Distribution A: Approved for Public Release. Case Number: AFLCMC-2023-0155

- Thanks to all, I am grateful to learn and grow from your knowledge, expertise, wisdom and much more
- Special thanks to:
 - God and my family
 - Dallen Andrew (co-author)
 - The A-10 engineering group
 - All of you

IF I HAVE SEEN FURTHER, IT IS BY STANDING ON THE SHOULDERS OF GIANTS.

- ISAAC NEWTON

B-Star Learning Experiences

https://3starlearningexperiences.wordpress.com/2018/12/24/standing-on-the-shoulders-of-giants-an-offer-you-cant-refuse/

Damage Tolerance and Residual Stress *in Transition*

Legacy Methods in Transition to: THE STATE OF THE ART 0.127 mm (0.005")

1.27 mm

(0.05")

Equivalent Initial Crack Method

Standard analysis:

Lincoln: "no documented case on a service aircraft where the 1.27 mm (0.05") corner flaw was unconservative."

CX benefit:

JSSG-2006: "no greater than the benefit derived by assuming a (0.127 mm) .005 inch radius corner flaw"

Figure 16. Equivalent Initial Crack Depth Histogram for Reamed Holes for F-4E(S) Aircraft

Rudd, J., (1977), *Technical Memorandum AFFDL-TM-77-58-FBE*, Applications of the Equivalent Initial Quality Method. Lincoln, J., (1985), In: Damage Tolerance – USAF Experience, Proceedings of the 13th ICAF Symposium. US Department of Defense (1998), *Joint Service Specification Guide – Aircraft Structures*, JSSG-2006.

0.127 mm approach fails to capture CX benefit dependency on stress and edge margin

0.127 mm approach fails to capture CX benefit dependency on stress and edge margin

Understanding CX Crack Growth

CX influence not characterized by equivalent initial crack method

Mills, T., Honeycutt, K., Prost-Domasky, S. and Brooks, C. (2009), Verification of Cold Working and Interference Levels at Fastener Holes, AFRL-RB-WP-TR-2009-3045, Contract No.: FA8650-08-M-38. 10

Characterizing Residual Stress (RS)

RS Analysis Without Full Stress Tensor

RS as a Crack Face Traction Load

ERSI Advancements

Analysis Ground Rules

Requirements to validate analyses using repeatable analysis methods

Sw	PR	EPARED BY:	DATE:	CHECKED BY:	DATE:	REV.	PAGE:
	Jac	ob Warner	9/19/2022	Brian Boeke		F	B-1
A-10 [Appendix <u>B:</u> BAMpF Ground Rules		CHECKED BY:	DATE:	REPORT NO:	
RPD Seve	S BAI			Luciano Smith		SA220R0207	
JCVC				(SWRI)		1 A	pril 2023

Appendix B: A-10 Multi-Point Crack Growth Analysis Ground Rules for Using BAMpF

The following guidelines mechanics analysis usir Beginning with SA220R Analysis (DTA) on <u>a nur</u> used the StressCheck C from cold expansion.

SwRI		PREPARED BY:	DATE:	CHECKED BY:	DATE:	REV.	PAGE:
		Jacob Warner	9/19/2022	Kaylon Anderson		F	C-1
10	A-10 DTA	Appendix C:	CHECKED BY:	DATE:	REPORT NO:		
× h	RPDS	Ground Rules for Including	Luciano Smith			SA220R0207	
and a state	Severe	Stresses from Cold Expansi	(SwRI)		1 April 2023		

Appendix C: A-10 Ground Rules for Including Residual Stresse from Cold Expansion in Damage Tolerance Analyses

The following guidelines describe A-10 best practices for including Residual Stress (RS) in

Lower Wing Skin Example

Lower Wing Skin Example

Advantage of Multi-Point

Equivalent IFS Method Shortfall

Mild Load Transfer Example

200 MPa far field stress8% load transfer

Validating Analysis with Limited Test Data

Test most severe stress and geometry for given spectrum

Validating Analysis with Limited Test Data

- Test most severe stress and geometry for given spectrum
- Predict less severe case(s)
 - 165 MPa shown here

Validating Analysis with Limited Test Data

- Test most severe stress and geometry for given spectrum
- Predict less severe case(s)
 - 165 MPa shown here
- Limit benefit to the tested scenario
- If additional benefit is needed, test a less severe scenario

High Consistency and Repeatability

Damage Tolerance and Residual Stress *in Transition*

Legacy Methods in Transition to: THE STATE OF THE ART 0.127 mm (0.005")

1.27 mm

(0.05")