

Research on Mechanical Performance of Titanium Alloy Laminated Structure

Tianjiao Zhao, Zhinan Zhang, Jipeng Zhang, Haichao Cui, Yuan Zhao, Bintuan Wang*

AVIC The First Aircraft Institute, China 2023.6.28

Contents

Introduction & Background

Static and Fatigue Test

Calculation Results

Summary

The Titanium alloy Laminated structure——TiGr (Titanium/Graphite Hybrid Laminates)

titanium

composite

Static and Fatigue Test

dhesive

Coding system

	C • • • •
lest snecimen	configuration
icst specifier	Comparation

L

48

180

0.4

R = 80 (2x)

0.4 16

- adhesive

2A: 0 degree 6A: 45 degree

composite -

Layer	Material	Thickness
Titanium alloy	TC4(Ti-6Al-4V)	0.3mm
Prepreg	Epoxy reinforced carbon fiber(5228A/CCF300)	0.125mm
Adhesive film	Epoxy adhesive film	0.08mm
titanium — 🔉 💻	film carrier	

Center-hole fatigue test specimen

50

- Three stages during the tensile process: elastic stage, yield stage, failure stage;
- TiGr2A21 with 0° fiber layers mainly relies on the composite constituent for load-bearing, and the yield process is more;
- TiGr6A21 with 45° fiber layers relies on the metal constituent, and the yield point is more obvious.

In-plane Shear Test

Туре	Average shear strength	Average bending strength
TiGr2A32	367MPa	1325MPa
TiGr2A43	332MPa	1247MPa
TiGr6A32	/	915MPa

- The surface of TiGr (metal layer) has large deformation and local convex, the shear failure occurs in the carbon fiber composite layer.
- The stress increases linearly with the increase of strain, and after the yield point, the stress-strain curve becomes flat

- The crack growth rate of TiGr is almost constant.
- The increase of load level leads to the increase of crack growth rate.
- Ti-layer shows tensile failure(crack is vertical to loading direction)
- CFRP-layer shows tensile-shear coupling failure (fiber fracture at hole edge + shear cleavage along fiber direction at free edge)

Analytical method ----> Finite element modeling

Layer	Туре	Criterion	Element
Titanium alloy	isotropic elastic-plastic material	Mises yield criterion	C3D8R
CFRP	anisotropic material	Hashin failure criterion	SC8R
Adhesive film	cohesive model	the secondary nominal stress criterion	COH3D8

- The cohesive element is connected to adjacent hexahedral and shell elements by common node.
- Mesh refinement on stress concentration areas.
- Consider the influence of thermal residual stress by a predefined field of cooling.

Change of the FVF has little influence on the damage mode. (32 vs 21)

> 2A (0°) fiber tensile failure is dominant and 6A (45°) matrix shear failure is dominant. (2A vs 6A)

Tensile Strength Calculation Results

Higher volume fraction of the adhesive film Experiment Relative Simulation Grade (MPa) (MPa) Error (%) TiGr2A21 853.7 841.48 1.43 TiGr 2A32 814.5 811.76 0.34 TiGr 6A21 550.5 590.73 7.31 TiGr 6A32 502.3 519.36 3.40

- \geq The strength of TiGr21 is **higher** than that of TiGr32 under any ply angle.
- \geq With the increase of the ply angle, the tensile strength **decreased** significantly.
- \geq For TiGr21 or TiGr32, the decrease in strength due to change in ply angles is not more than 40%. 12

 \triangleright

Higher volume fraction of the adhesive film				
Grade	Experiment (MPa)		Simulation (MPa)	Relative Error (%)
TiGr2A32	367		340.36	7.26
TiGr2A43	332		320.88	3.35

- No significant difference in damage modes between the two TiGr variations.
 - Interfacial delamination is obvious in the shear zone, indicating that **the interfacial delamination** is one of the main factors affecting the shear failure.

Higher volume fraction of the adhesive film

Grade	Experiment (MPa)	Simulation (MPa)	Relative Error (%)
TiGr2A32	367	340.36	7.26
TiGr2A43	332	320.88	3.35

- Shear strength of TiGr32 is higher than that of TiGr43(high FVF & low MVF)under any ply angle.
- When ply angle increases to 45°, the shear strength increases significantly due to the increase of **bearing capability** along the fiber direction.

Grade	Experiment (MPa)	Simulation (MPa)	Relative Error (%)
TiGr2A32	1325	1339.99	1.13
TiGr2A43	1247	1320.30	5.88
TiGr6A32	915	1013.20	10.73

- Upper fiber layer—mainly compression damage
 Lower fiber layer—mainly tensile damage.
- Interfacial delamination leads to failure.
- > FVF has **little influence** on the damage mode.

Bending Strength Calculation Results

Grade	Experiment (MPa)	Simulation (MPa)	Relative Error (%)
TiGr2A32	1325	1339.99	1.13
TiGr2A43	1247	1320.30	5.88
TiGr6A32	915	1013.20	10.73

- The variation in bending strength with ply angle is **similar** to that of tensile strength.
- There is little difference between the bending strength when changing the FVF (The failure mode is the same).

250

200

150

100

50

10³

10

10

Sa (MPa)

TiGr6A21

TiGr2A21

TiGr6A32

TiGr2A32

10⁶

Analysis results of fatigue crack initiation life of TiGr6A32 of center-hole specimen.

300

250

200

150

100

50

Sa (MPa)

- The fatigue crack initiation life prediction method was validated using experimental data.
- The model was used to predict fatigue crack initiation life for different TIGR variations.
- 17 The ply angle affects the fatigue initiation cycles more than the metal volume fraction of TiGr. \geq

The strength performance of TiGr are studied experimentally and theoretically. The conclusions are as follows:

- Static test results shows that TiGr exhibits composites behavior.
- The failure strength showed a strong correlation with the metal behavior due to a low FVF.
- Besides, higher adhesive volume fraction affects the mechanical properties.
- TiGr shows an excellent fatigue crack growth resistance.
- > FE Model was validated using experimental results.
- The damage mechanism, the effects of FVF, ply angle and other factors on the mechanical properties were analyzed.

Question & Comments