

AFRL

Intelligence Augmentation for Aviation-based NDE Data

Eric Lindgren

Materials State Awareness Branch

Materials and Manufacturing Directorate

June 27, 2023

University of Utah

- Mr. Tushar Gautam
- Dr. Mike Kirby
- Dr. Jacob Hochhalter
- Dr. Shendian She

Industry Collaborators

- Dr. John Aldrin Computational Tools
- Mr. David Forsyth TRI Austin

Outline

- Motivation / Impact
- Challenges
- Technical Approach
 - Data
 - Algorithms
 - Examples
 - Considerations
- Way Forward / Summary

2

AFRL

Motivation / Impact

The potential of Artificial Intelligence / Machine Learning (AI/ML)

"The Air Force aims to harness and wield the most optimal forms of artificial intelligence to accomplish all mission-sets of the service with greater speed and accuracy"

USAF News release, "https://www.af.mil/News/Photos/igphoto/2002319445/"

Distilling AI /ML

AI / ML is, in its simplest form:

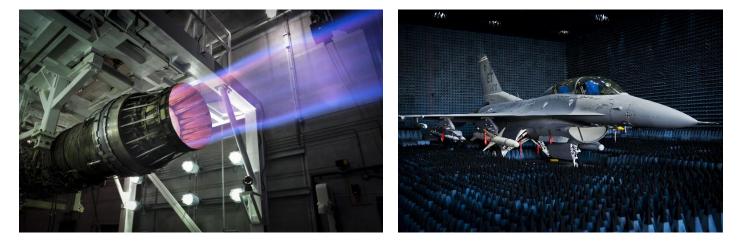
- Statistical regression
- Statistical classification

Can be trained:

- Supervised
- Unsupervised

Dependent on:

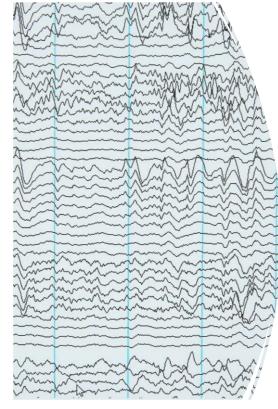
- Amount of data
- Accuracy of data
- Noise in data



Data Quantity and Noise

Objective: how does sample size and noise affect accuracy

- Illustrated with synthetic data for stress intensity factors
- Add synthetic Gaussian noise
 - Use signal-to-noise ratio to set standard deviation of the noise
- Determine mean square error as a function of data quantity

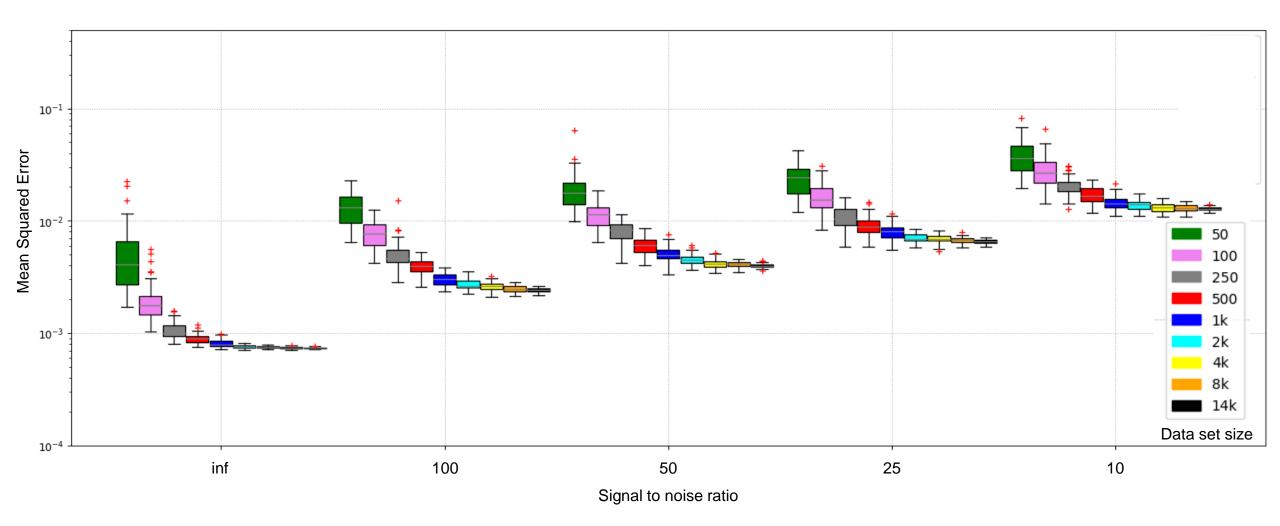


Incorporating noise

Neural Net Parameters

- Initialization is fixed
 - Minimize learning variations in neural net
- SNR and number of training examples fixed
 - Run 50 times with differing data samples from pool of 15,000 data points
- Multi-layered perceptron
 - Four-layer neural network with 50 layers in each hidden layer
 - Tanh activation in hidden layers, followed by exponential activation in output layer
- Neural Network is trained for 20,000 epochs
 - Early stopping when change in error from one epoch to next drops below 1.0e-8

Multi-layer Perceptron Results



THE AIR FORCE RESEARCH LABORATORY

Lessons Learned...

• Need the right data

USSF

- Not just more data
- Independent data from flaws
- Ensure data quality
 - Noise and other factors can confound statistics
- Understand data quantity
 - How much required to obtain desired outcomes
 - Model-based data must be representative
- Define desired precision / accuracy
 - Can you get there from here?

Algorithms to assist in decisions and diagnostics much more practical

Pros and Cons of AI / ML

Pros:

- Handle Laborious and Repetitive Tasks
- Error Reduction (Complex Tasks)
- Faster Decisions/Actions
- Reduction in Overall Risk
- Act as 'Digital Assistant'
- Repository for Human 'Expertise'

Cons:

- Cannot make decisions well for scenarios not trained
- Lack of Inherent Flexibility / Poor at Judgement Calls
 - e.g. SAS flight 751
- Degradation of Human Skills
- High Cost: Development, Validation
- Lack Moral Values
- Change in Employment

Back to NDE....

Data diagnostics outcome depends on function and location:

• Research, manufacturing, and sustainment: differing requirements on accuracy and precision

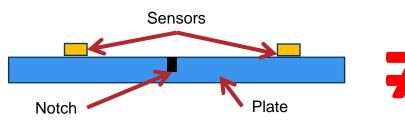


AFRL Testing

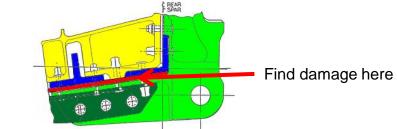
Representative Manufacturing

Representative Depot Maintenance

Challenges: Flaw Detection / Characterization



- Equipment Variability
- Structural Complexity / Variability
 - From design, manufacturing, repair, modification, maintenance, and usage
- Flaw Complexity / Variability
 - Stochastic variability (e.g. cracks)
 - Microstructural variability
 - Scale of flaw to detect
 - Boundary Conditions



- Validation of Capability
 - Required for ASIP / PSIP driven applications
 - POD or equivalent
- Qualification
- Time variance in performance
 - Includes durability
- Environment
 - Temperature, loads, etc.

Data variability affects reproducible detection/characterization of flaws

12

Addressing Challenges: Intelligence Augmentation

Also known as Collaborative Intelligence

Integrates three general classes of algorithms:

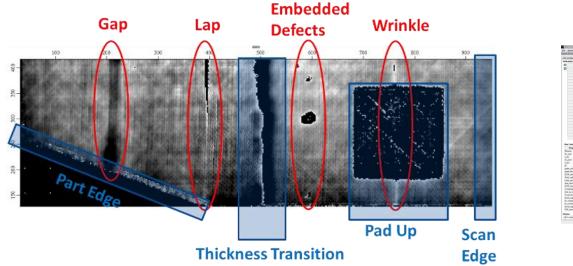
- Expert / heuristic-based algorithms
 - "Rules of the road" to help make decisions
- Model-based algorithms
 - Mental "what-if" scenarios
- AI/ML
 - Data-driven experience, aka "lessons learned"
 - Data quality is quantified

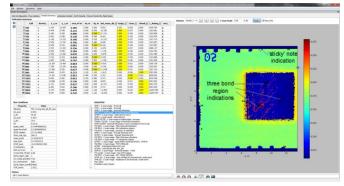
All three in use today as part of daily life:

- Optimal decision making can include two or more
 - Depends on circumstances

Retaining human-in-the-loop

AFRL Success: Heuristics

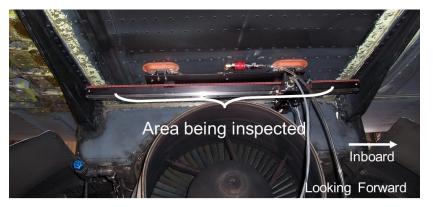


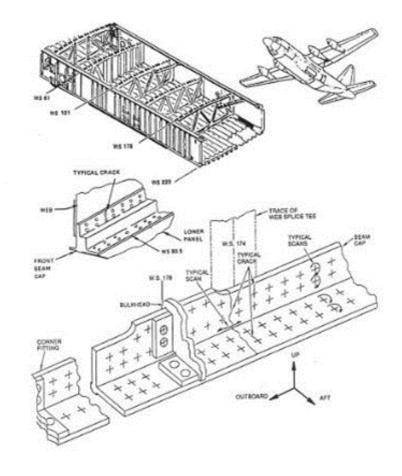


- Assisted Data Analysis (ADA) for ultrasonics of composite panels
 - 100% Ultrasonic inspection for manufacturing QA
- Implement human data review procedures in algorithms
 - Not required for fielded systems: localized inspections only

AFRL Success: Heuristics and Classification

- C-130 Lower Forward Spar Cap**
 - Leveraged C-141 successes
- Leaky Rayleigh waves for holes with fasteners installed
- Automated analysis of data
- Verified by human review
- Validated by full POD study





**Lindgren, E., Judd, D., Concordia, M., Mandeville, J., Aldrin, J. C., Spencer, F., Fritz, D., Pratt, E., Waldbusser, R., Mullis, R. T., "Validation and Deployment of Automated Ultrasonic Inspections for the C-130 Center Wing," ASIP Conference, Savannah, Georgia, (December 2 - 4 2004).

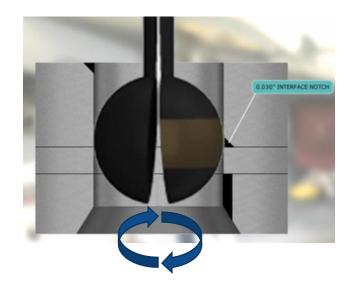
AED

AFRL Progress: Combining All Three

Presented at 2021 ASIP Conference:

- Bolt Hole Eddy Current Crack Sizing
 - Depth and length
- Addresses ill-posed inversion translating impedance plane to crack dimensions
- Accuracy: within 8.5% of actual depth
 - Mitigated all equipment / sensor variability
 - Within bounds of first oversize
 - Enables one-step disposition
- Next step: address structural variability
- Enhances risk management, including unexpected cracks

Nondestructive Characterization of Cracks for Accelerated Disposition



Way Forward – IA for USAF NDE Data

- Enhance understanding of impact of data variability
 - Synthetic and real (when available) data to quantify impact
 - Consider quantity, quality, accuracy, precision
- Integrate variability into diagnostic algorithms
 - Sensitivity analysis to provide answer with statistical metrics of accuracy
 - Develop mitigation for factors with greatest impact
- Integrate at least two of three approaches
 - Heuristics, model-based, and data AI/ML-driven
- Develop capability to address multiple material systems
- Validate on representative challenge problems
- Integrate into architecture of next gen NDE analytics

Summary

- AI / ML requires large data sets
 - Consider data quantity, quality, variability, and noise
- Sparseness and variability in engineering data challenge current analytical methods
 - NDE data diagnostics must detect outliers and nuances
- Optimal assisted diagnostic algorithms for NDE include at least two: heuristics, model-based, and data-driven
- AFRL has history of developing and transitioning NDE data diagnostic algorithms
- Lessons learned from NDE diagnostics relevant for all engineering data – must have all attributes of data to enable optimal decisions

Discussion

Eric.Lindgren@us.af.mil

Caelum Domenari

THE AIR FORCE RESEARCH LABORATORY