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Problem overview

• Foreign object damage (FOD) in 

the fillet region of the leads to 

crack growth

• Depending on the location of the 

crack it may propagate to the 

bore of the disk

𝛼
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Objectives

• Design an experimental geometry to replicate the features of non-proportional 

crack propagation in aeroengine disks

• Carry out experiments to establish practical growth trajectories under 

controlled conditions

• Develop an improved criterion for the prediction of crack direction and, if 

possible, growth rate



4

Crack growth mechanism

• Different crack direction criteria available

• Correct criterion is material dependent

• Transition between criteria is possible

• Maximum tensile stress:
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Non-proportional loading

• Non-proportional loading affects growth 

rate and trajectory

• Variable mode-mixity

– Multiple local load maxima in one cycle

• Crack tip shielding

𝜃
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Crack modelling approach

• Contour integral to compute 

stress intensity factors (SIFs) in 

Abaqus + FRANC3D

• Incremental crack growth 

through remeshing

• Limited non-proportional crack 

growth modelling
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Crack modelling approach

• Contour integral to compute 

stress intensity factors (SIFs) in 

Abaqus + FRANC3D

• Incremental crack growth 

through remeshing

• Limited non-proportional crack 

growth modelling

FRANC3D workflow [1]

[1] P. A. Wawrzynek, B. J. Carter, and A. R. Ingraffea, “Advances in simulation of arbitrary 3D crack growth using FRANC3D/NG,” 12th Int. Conf. Fract. 2009, ICF-12, vol. 1, pp. 344–354, 2009.
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Loading

• Crack is subject to mixed-mode I/II/III loading

• LCF loading: rotational and thermal loads

• HCF loading: vibration
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• Static mode shapes:

– 1st flap: 198.15 Hz

– 1st torsion: 672.46 Hz

Mode shapes
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Crack growth mechanism

• Combination of high-cycle and low-

cycle loading

• Previous work on compressor blades 

showed HCF to be the primary 

mechanism of fracture [2]

• Initial LCF growth until HCF threshold

• Subsequent HCF + LCF Minor cycle of ‘Descent-Thrust Reverse-Taxi’ and a 
major cycle of ‘Start-Takeoff-Shutdown’ [1]

[2] D. Mangardich, F. Abrari, and Z. Fawaz, “Modeling crack growth of an aircraft engine high pressure compressor blade under combined HCF and LCF loading,” Eng. Fract. Mech., vol. 214, no. April, 
pp. 474–486, Jun. 2019, doi: 10.1016/j.engfracmech.2019.04.028.
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Crack growth mechanism

• Transition from short crack to long 

crack behaviour at 50 μm for Ti alloys 

[3]

• 125 μm assumed initial crack depth

Minor cycle of ‘Descent-Thrust Reverse-Taxi’ and a 
major cycle of ‘Start-Takeoff-Shutdown’ [1]

[3] Nicholas T. Chapter 4: LCF-HCF Interactions. High Cycle Fatigue - A Mechanics of Material Perspective. Ohio: Elsevier; 2006



14

Crack growth simulation

• Crack growth 

simulation of LCF 

component completed 

in FRANC3D + Abaqus

• Crack paths kink to 

satisfy MTS leading to  

∆𝐾𝐼𝐼 = 0

[1] P. A. Wawrzynek, B. J. Carter, and A. R. Ingraffea, “Advances in simulation of arbitrary 3D crack growth using FRANC3D/NG,” 12th Int. Conf. Fract. 2009, ICF-12, vol. 1, pp. 344–354, 2009.

Mode I and II stress intensities along first 55 crack fronts under pure LCF 
loading (A=TE, B=LE) [1]
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Blisk crack propagation – 70% fillet height

• Assumed that loading may be simplified to:

– Steady: rotational body forces

– Cyclic: first flap mode vibration

• Inserted semi-elliptical flaw at 70% “fillet height”

KI under LC loads for crack growth under consecutive steps Pressure side labelled ‘A’
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Blisk crack propagation – 20% fillet height

• Inserted semi-elliptical flaw at 20% “fillet height”

• Immediate growth towards bore
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Biaxial test rig

EDM Notch

Hydraulic cylinderSpecimen
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• Cruciform sample for 

biaxial machine

• Tests performed on mild 

steel S275 and titanium 

alloy Ti-6Al-4V

• Loading directions

– X: biaxial machine

– Y: biaxial machine

– Z: hydraulic fixture

Test sample



19

Four-point bending design considerations

• Biaxial machine

– 1 actuator per axis

– Specimen is not centred during 

loading

• Risk of fretting wear at loading pins

– Requires horizontal compliance
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Test settings

• Loads adjusted to influence 

crack trajectory

Test 1 Test 3

Test

Number

Material x load [kN] y load (cyclic)  

[kN]

z load 

[kN]

Nf

1 Mild steel S275 30.1 14.5 8.7 500,884

2 Ti-6Al-4V 20.1 14.5 8.7 261,306

3 Mild steel S275 20.1 9.5 15.4 839,458

4 Ti-6Al-4V 20.1 9.5 15.4 72,400
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Results – fracture surfaces

Test 1

Steel S275

Test 2

Ti-6Al-4V

Test 3

Steel S275

Test 4

Ti-6Al-4V
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Results – fracture surfaces

Fatigue Fatigue

Fatigue
Shear lip

Fatigue

Fast fracture
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Test 4 fracture surface

• Highly faceted surface due 

to rolling process

• Striations visible in SEM 

micrograph

10 µm
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Test 4 fracture surface

• 0.18 µm approximate average 

striation size in region of interest

• 0.081 µm predicted crack growth 

per cycle
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Summary

• Multiaxial fatigue tests have been completed on notched cruciform specimens

• Directionality of rolled Ti-6Al-4V must be understood further
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• Complete cruciform tests crack deflection angles

• Complete tests with single-notched and double notch specimens

• Complete SENB tests on Ti-6Al-4V specimens to determine directionality 

of rolled material

Future work
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