

ICAF2023, Delft, NL

Mechanical Property Across Size Scales: 3D Printed Metal Materials with Microscale Heterostructures

Chinese Aeronautical Establishment (CAE) Yu Zhijie, Xue Jingfeng, Sun Qixing, Zhou Jin, Wang Yanfei 2023.6.28

Background	3D printing provides high-performance aeronautical materials
	2D printing gap arotag size offects due to the priors beterestructures
Progress	3D printing generates size effects due to the micro neterostructures
Result	Size effects provide high strength and ductility but also analysis difficulty
Prospect	Fatigue and structural integrity of printed materials needs more research

□ 3D printing provides high-performance aeronautical materials

Vertical stabilizer part of A350WXB, EOS Inc.	Fuel nozzle of LEAP engine <i>, GE</i>
Antenna bracket of RUAG satellite, <i>EOS Inc.</i>	Turbine blades made by EBM, <i>GE</i>

Traditional manufacturing is unable to build such structures or needs much more time, weight, and costs.

DAdvantage of 3D printing aeronautical materials

1. Lower weight, higher performance

AM allows finer geometric optimization, providing structures with higher performance and lower weight.

2. Less parts and assembles

AM decreases assembling work thus saves much time and cost, and reduces further testing.

Printed Titanium part of A350XWB

AM repaired turbine blades, Optomec Inc.

3. Structural repairing

The strength of the AM repaired structure is no less than the original one.

4. Design for addictive manufacturing

Material-Structure-Function integrated design; force, thermal, electromagnetic, etc. integrated design; DfAM and DfAAM.

Difficulty and potentiality of 3D printing: Heterostructures

Progress

Mechanical features: Size-Effect

Size-effect exists in most materials, especially significant in materials with a characteristic size below millimeters, which always exists in AM materials.

In many experiments, the AM materials have been found higher strength and hardness, but lower fatigue performance.

This High strength – Low ductility feature coincide with the material size effect.

Mechanical description: Model and Constitution

Micro geometry of printed interlayers. Shi, 2018

Model describing the microscale heterostructures has been build.

However conventional elastoplastic theory cannot describe the size-effect of the AM heterogeneous materials.

Progress

Mechanical description: Model and Constitution

CMSG (Conventional theory of Mechanism-based Strain gradient)

$$\sigma_{flow} = M\tau \quad \tau = \alpha\mu b \sqrt{\rho} \quad \rho = \rho_{S} + \rho_{G} \quad \rho_{G} = \overline{r} \frac{\eta}{b}$$
$$\sigma_{flow} = \sigma_{ref} \sqrt{f^{2}(\varepsilon^{p}) + l\eta^{p}} \quad l = M^{2}\overline{r}\alpha^{2} \left(\frac{\mu}{\sigma_{ref}}\right)^{2} b = 18\alpha^{2} \left(\frac{\mu}{\sigma_{ref}}\right)^{2} b$$

With J2 flow theory

$$\dot{\sigma}_{ij} = K \dot{\varepsilon}_{kk} \delta_{ij} + 2\mu \left[\dot{\varepsilon}_{ij} - \frac{3\dot{\varepsilon}}{2\sigma_e} \left(\frac{\sigma_e}{\sigma_{flow}} \right)^m \sigma_{ij} \right]$$

Further Theory: Considering the long range effect of GND

 \boldsymbol{n}^p

Result

Stress near domain boundary

Stress-strain curve of elastic-plastic transition stage (b) of the bimodal structure (a).

Mises stress at different applied strain, with short and long range effect of GND separated (c-e).

Detailed relation of Mises stress and distance from the hetero-interface at different applied strain (f).

D Effective strain gradient near domain boundary

Strain gradient distribution (a) and relation with distance from hetero-interface, and definition of interface affected zone (IAZ) (b,c)

d_{IAZ} of different loads and paths (d, e)

d_{IAZ} nearly independent with load (and its direction), with a width around 5um (strain gradient characteristic length ~10um)

Result

11/15

D Extra hardening of IAZ

Separate the effect of short/long range effect of GND, and compare the stress difference of the three bimodal structure

Nearly linear relations between extra hardening and the volume fraction of IAZ ---- effect from IAZ composed of the most proportion of extra hardening Result

□ Strength and ductility relations

Homogeneous materials, or macroscale heterogeneous materials (namely when the effect of GND is ignorable) have conventional relationships between strength and ductility.

Size effect allows extra strength/ductility

More extensive difference between heterostructure phases makes this extra property more significant.

Optimization balance due to a maximum density of GND, where the generation and distinguish of GND reach balance.

Prospect

□ Structural Integrity, from aspect of residual stress

$$\sigma_{\rm r} = A\mu b \sqrt{\rho_{\rm GND}^{\rm r}} \qquad \rho_{\rm GND} = \rho_{\rm GND}^{\rm r} + \rho_{\rm G} \qquad \sigma_{\rm flow} = \sigma_{\rm y} \sqrt{f^2 (\varepsilon^{\rm p}) + l\eta^{\rm p}} + A\mu b \sqrt{\rho_{\rm GND}^{\rm r}}$$

BAM11 的纳米压痕硬度数据

(nanoindentation hardness

data for BAM11)

Load-displacement curve, and relation between hardness and residual stress, Bu, 2020 Next Stage Literature reference 304Steel & Al alloy \rightarrow M:G晨光 20cm RULER ARL96004

13/15

Linking 3D printing, microstructure, mechanical feature, and application

Thanks for your kind attention. 探索 创新 开放 共享

http://www.cae.ac.cn/

ICAF2023, Delft, NL